find the area and volume of the figure developed by an equilateral triangle with sides *s* if it is revolved about one of its sides.

- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates
- Minima Maxima: y=ax³+bx²+cx+d
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: 9a³y=x(4a-x)³
- Minima maxima: a²y = x⁴
- how to find the distance when calculating moment of force
- strength of materials
- Analytic Geometry Problem Set [Locked: Multiple Questions]
- Equation of circle tangent to two lines and passing through a point
- Product of Areas of Three Dissimilar Right Triangles
- Perimeter of Right Triangle by Tangents
- Differential equations
- Laplace
- Families of Curves: family of circles with center on the line y= -x and passing through the origin
- Family of Plane Curves
- Differential equation
- Differential equation

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

Use Pappus theorem:

V = volume generated

A = surface area generated

A

_{t}= generating areaL = generating length of curve

C = distance traveled by the centroid

$h = \sqrt{s^2 - (\frac{1}{2}s)^2} = \frac{\sqrt{3}}{2}s$

$\bar{y} = \frac{1}{3}h = \frac{1}{3}(\frac{\sqrt{3}}{2}s) = \frac{\sqrt{3}}{6}s$ ← centroid of area

$A_t = \frac{1}{2}sh = \frac{1}{2}s(\frac{\sqrt{3}}{2}s) = \frac{\sqrt{3}}{4}s^2$

$V = A_t \times C = A_t \times 2\pi \bar{y}$

$V = \frac{\sqrt{3}}{4}s^2 \times 2\pi (\frac{\sqrt{3}}{6}s)$

$V = \frac{1}{4}\pi s^3$

$L = 2s$ ← the third side, being the axis of rotation, cannot generate a surface

$\bar{y} = \frac{1}{2}h = \frac{1}{2}(\frac{\sqrt{3}}{2}s) = \frac{\sqrt{3}}{4}s$ ← centroid of lines

$A = L \times C = L \times 2\pi \bar{y}$

$A = 2s \times 2\pi (\frac{\sqrt{3}}{4}s)$

$A = \sqrt{3}\pi s^2$

You can consider the volume generated as a cone, there will be two cones involved with common bases. The radius of each cone is h and the height is s/2.

$V = 2 \times \frac{1}{3}\pi h^2 (\frac{1}{2}s)$

$V = 2 \times \frac{1}{3}\pi (\frac{\sqrt{3}}{2}s)^2 (\frac{1}{2}s)$

$V = \frac{1}{4}\pi s^3$

For the surface area generated, it is the lateral area of two cones

$A = 2 \times \pi hs = 2 \times \pi (\frac{\sqrt{3}}{2}s)s$

$A = \sqrt{3}\pi s^2$