Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week ago
- Sir what if we want to find…1 week ago
- Hello po! Question lang po…3 weeks 4 days ago
- 400000=120[14π(D2−10000)]
(…1 month 4 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 4 weeks ago
- I think what is ask is the…2 months 4 weeks ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
To get the height of this
To get the height of this weird cylinder, recall the formula:
$$V=BH$$
where $V$ is the volume of the figure, $B$ is the area of the base, and $H$ is the height of the figure.
With that in mind, we plug this given to the formula above:
$$V=BH$$ $$350 \space in^3 = \left(\frac{1}{2}r^2\theta\right)(4r)$$
$$350 \space in^3 = \left(\frac{1}{2}(r^2)\left(25^o\left(\frac{\pi}{180^o}\right)\right)\right)(4r)$$ $$350 \space in^3 = \left(\frac{1}{2}(r^2)\left(\frac{5\pi}{36}\right)\right)(4r)$$ $$350 \space in^3 = \frac{5\pi}{18}r^3 $$ $$\frac{1260}{\pi} = r^3$$ $$r = 7.3 \space inches$$
Note that the area of a sector of circle is $A=\frac{1}{2}r^2\theta$, where $r$ is the radius of the sector and $\theta$ is the central angle of the sector.
Since the problem asks for the height of this weird cylinder, which is four times longer than the radius of the sector of circle, so:
$$H = 4r$$ $$H = 4(7.3 \space in)$$ $$H = 29.2 \space in$$
Therefore, the height of this weird cylinder is $\color{green}{H=29.2 \space in}$.
Alternate solutions are encouraged...