Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 days 17 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…3 days 17 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt413 days 17 hours ago
- Thank you so much3 days 3 hours ago
- How did you get the 2.8 mins…3 days 2 hours ago
- How did you get the distance…3 days 2 hours ago


This is interesting, the
This is interesting, the question however is not clear, but this is how I understand it, and I hope I am correct: What is the depth of the water inside the cone when the ice melted into water?
If we will not consider the expansion of water when it turned into ice, we will simply equate the volume of the ice cube and the volume of water inside the cone. We can do ratio and proportion to express the radius of water surface in terms of the depth of water and we will have an equation of depth of water alone as the unknown. This way, we solve the problem.
If Physics will come into play, we need to consider the volumetric expansion of water to ice, I think the coefficient of that expansion is constant. When ice melts into water, the volume of water is a little less than the volume of ice cube.