Mechanics

From the circular disk of diameter 100mm is cut out a circle whose diameter is the radius of the disk. F ind the center of gravity of remaining portion.
img_20171121_154911.jpg

Ah! You mean this?

circle.png

To get the coordinates of centroid of the figure above, we need to use the formula

Aˉx=A1x1+A2x2+A3x3+A4x4+....Anxn Aˉy=A1y1+A2y2+A3y3+A4y4+....Anyn

where:

A= area of the whole figure

x= distance of the centroid from the x-axis

A1= area of one part of the figure

x1= distance of its particular centroid from the x-axis

.

.

.

.

.

.

y= distance of the centroid from the y-axis

A1= area of one part of the figure

y1= distance of its particular centroid from the y-axis

The formula that is applicable to the figure above would be:

Aˉx=A1x1+A2x2+A3x3+A4x4 Aˉy=A1y1+A2y2+A3y3+A4y4

Redrawing the figure to make things clearer:

circle_-_copy.png

Now getting the A, A1, A2, A3, A4:

For A:

A=πR2πr2 A=π(5 cm)2π(2.5 cm)2 A=25π cm26.25π cm2 A=18.75π cm2

For A1:

A1=254π cm26.252π cm2 A1=3.125π cm2

For A4:

A4=254π cm26.252π cm2 A4=3.125π cm2

For A2:

A2=254π cm2

For A3:

A3=254π cm2

Now getting the x, x1, x2, x3, x4:

For x:

We can get it after I got x1, x2, x3, x4

For x1:

a_1_circle.png

Then the centroidal coordinates of A1 is:

x1=0.3488r x1=(0.3488)(5 cm) x1=1.744 cm

The real value of ˉx is:

ˉx1=5+1.744 cm=6.744 cm

For x2

The centroidal coordinates of a quarter circle is:

circle_5.png

ˉx=43πr ˉy=43πr

Then the centroidal coordinates of A2

circle3.png

x2=43πr x2=43π(5 cm) x2=2.1 cm

The real value of x2 is:

x3=52.1 cm=2.9 cm

For x3:

The centroidal coordinates of a quarter circle is:

circle_5.png

x=43πr y=43πr

Then the centroidal coordinates of A3

circle4.png

x3=43πr x3=43π(5 cm) x3=2.1 cm

The real value of x3 is:

x3=52.1 cm=2.9 cm

For x4:

circle2.png

Then the centroidal coordinates of A4 is:

x4=0.3488r x4=(0.3488)(5 cm) x4=1.744 cm

The real value of x4 is:

x4=5+1.744 cm=6.74 cm

We can now get the ˉx:

Aˉx=A1x1+A2x2+A3x3+A4x4 (18.75π cm2)ˉx=(3.125π cm2)(6.744 cm)+(254π cm2)(2.9 cm)+(254π cm2)(2.9 cm)+(3.125π cm2)(6.744 cm) ˉx=4.18 cm

To get the ˉy, notice that the figure is symmetrical, so the ˉy centroidal coordinate would be 0

Therefore, the centroid C(ˉx,ˉy) of the figure above would be C(ˉx,ˉy)=C(4.18,0)

Alternate solutions are encouraged:-)