Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.4 weeks 1 day ago
- Sir what if we want to find…4 weeks 1 day ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 2 weeks ago
- need answer3 months 2 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
$\dfrac{5s^2- 15s - 11}{(s +
$\dfrac{5s^2 - 15s - 11}{(s + 1)(s - 3)^3} = \dfrac{A}{s + 1} + \dfrac{B}{s - 3} + \dfrac{C}{(s - 3)^2} + \dfrac{D}{(s - 3)^3}$
$5s^2 - 15s - 11 = A(s - 3)^3 + B(s + 1)(s - 3)^2 + C(s + 1)(s - 3) + D(s + 1)$
$\begin{align}
5s^2 - 15s - 11 = & \, A(s^3 - 9s^2 + 27s - 27) + B(s^3 - 5s^2 + 3s + 9) \\
& + C(s^2 - 2s - 3) + D(s + 1)
\end{align}$
$5(3^2) - 15(3) - 11 = D(3 + 1)$
$-11 = 4D$
$D = -11/4$
Set s = -1
$5(-1)^2 - 15(-1) - 11 = A(-1 - 3)^3$
$9 = -64A$
$A = -9/64$
Equate the coefficients of s3
$0 = A + B$
$0 = -\frac{9}{64} + B$
$B = 5/64$
Equate the coefficients of s2
$5 = -9A - 5B + C$
$5 = -9(-\frac{9}{64}) - 5(\frac{5}{64}) + C$
$C = 33/8$
$\begin{align}
\mathcal{L}^{-1} \left[ \dfrac{5s^2- 15s - 11}{(s + 1)(s - 3)^3} \right] & = \mathcal{L}^{-1} \left[ \dfrac{-9/64}{s + 1} + \dfrac{5/64}{s - 3} + \dfrac{33/8}{(s - 3)^2} + \dfrac{-11/4}{(s - 3)^3} \right] \\
& = -\dfrac{9}{64} e^{-t} + \dfrac{5}{64} e^{3t} + \dfrac{33}{8} \dfrac{e^{3t}t^{2 - 1}}{(2 - 1)!} - \dfrac{11}{4} \dfrac{e^{3t}t^{3 - 1}}{(3 - 1)!} \\
& = -\dfrac{9e^{-t}}{64} + \dfrac{5e^{3t}}{64} + \dfrac{33e^{3t}t}{8} - \dfrac{11e^{3t}t^2}{8}
\end{align}$
Thank you so much for you
In reply to $\dfrac{5s^2- 15s - 11}{(s + by Jhun Vert
Thank you so much for you assistance ... could you help with another question