Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 2 weeks ago
- need answer4 months 2 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
The formula for getting a
The formula for getting a solution of a differential equation is $$P(D)(e^{rx}f(x)) = e^{rx}P(D+r)f(x)$$
With the form of differential equation given in the problem number 1, the Exponential Shift Theorem formula is useless, so we need to modify the
given differential equation so that we can use the Exponential Shift Theorem formula.
Now modifying the given differential equation:
$$(4D+1)^4y=0$$ $$\left(4\left(D+\frac{1}{4}\right)\right)^4y=0$$ $$4\left(D+\frac{1}{4}\right)^4y=0$$ $$\left(D+\frac{1}{4}\right)^4y=0$$
Then we let $u = e^{\frac{1}{4}x}y$, then getting the $y$: $y = e^{-\frac{1}{4}x}u $. So....
$$\left(D+\frac{1}{4}\right)^4y=0$$ $$\left(D+\frac{1}{4}\right)^4\left(e^{-\frac{1}{4}x}u\right)=0$$
Now....the form above is similar to the Exponential Shift Theorem form....Compare the two expressions below:
$$P(D)(e^{rx}f(x)) = e^{rx}P(D+r)f(x)$$ $$P(D)(e^{-\frac{1}{4}x}u)^4 = e^{-\frac{1}{4}x}P(D+\frac{1}{4})u$$
Then...we can now do this:
$$\left(D+\frac{1}{4}\right)^4y=0$$ $$\left(D+\frac{1}{4}\right)^4\left(e^{-\frac{1}{4}x}u\right)=0$$
Using the Exponential Shift Theorem, we can rewrite $\left(D+\frac{1}{4}\right)^4\left(e^{-\frac{1}{4}x}u\right)=0$ as:
$$\left(D+\frac{1}{4}\right)^4\left(e^{-\frac{1}{4}x}u\right)=0$$ $$e^{-\frac{1}{4}x} D^4u = 0$$ $$D^4u = 0$$
Now....get the integral of $D^4$ until only the $u$ remains.
$$D^4u = 0$$ $$\int D^4u = \int 0$$ $$D^3u + c_1 = c_2$$ $$D^3u = c_1$$
Next:
$$D^3u = c_1$$ $$\int D^3u = \int c_1$$ $$D^2u + c_2 = c_1x + c_3$$ $$D^2u = c_1x + c_2$$
Next:
$$D^2u = c_1x + c_2$$ $$\int D^2u = \int c_1x + \int c_2$$ $$Du + c_3 = c_1 \left(\frac{x^2}{2}\right) + c_2x + c_3$$ $$Du = c_1 x^2 + c_2x + c_3$$
Lastly:
$$Du = c_1 x^2 + c_2x + c_3$$ $$\int Du = \int c_1 x^2 + \int c_2x + \int c_3$$ $$u + c_4 = c_1 \left( \frac{x^3}{3}\right) + c_2 \left( \frac{x^2}{2}\right) + c_3x + c_4$$ $$u = c_1 x^3 + c_2x^2 + c_3x + c_4$$
We now got the $u$, so we almost got the solution to the given differential equation above:
$$y = e^{-\frac{1}{4}x} u$$ $$y = e^{-\frac{1}{4}x} (c_1 x^3 + c_2x^2 + c_3x + c_4)$$ $$y = c_1e^{-\frac{1}{4}x}x^3 + c_2e^{-\frac{1}{4}x}x^2 + c_3e^{-\frac{1}{4}x}x + c_4e^{-\frac{1}{4}x}$$
The solution to the differential equation above is
$$y = c_1e^{-\frac{1}{4}x}x^3 + c_2e^{-\frac{1}{4}x}x^2 + c_3e^{-\frac{1}{4}x}x + c_4e^{-\frac{1}{4}x}$$
Alternate solutions are encouraged.....
Sa ikalawang tanung....ang haba rin ng solution...pero parehas lang ng solution sa question no. 1.......Practice lang kayo......madali lang number 2.....parehas ang solution sa number 1....hehehehehe
Wow... astig!
In reply to The formula for getting a by fitzmerl duron
Wow... astig!
Thanks, Romel.....
In reply to Wow... astig! by Jhun Vert
Thanks, Romel......pinagsikapan ko....sinuwerte nasagot....hehehehe