Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 days 19 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…3 days 19 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt413 days 19 hours ago
- Thank you so much3 days 4 hours ago
- How did you get the 2.8 mins…3 days 4 hours ago
- How did you get the distance…3 days 4 hours ago


Your question don't have
Your question don't have enough details. What are you trying to solve from this equation? Tagging it with Maxima and Minima is not enough information.
Yung Ans. Niya po is (0,0) at
In reply to Your question don't have by Jhun Vert
Yung Ans. Niya po is (0,0) at Minimum.
Yung process sana po sir. Thanks po
Yung process po sana kung
In reply to Your question don't have by Jhun Vert
Yung process po sana kung paano solve.
Yung ans nya po is (0,0) , minimum.
$a^2 y = x^4$
$a^2 y = x^4$
Differentiate
$a^2 y' = 4x^3$
Equate y' = 0 to determine the critical points (maxima or minima)
$a^2 (0) = 4x^3$
$x = 0$
For x = 0
$a^2 y = 0^4$
$y = 0$
Hence,
critical point = (0, 0)
Check the neighboring points to determine whether (0, 0) is minimum or maximum. Set x = ±1:
$a^2 y = (\pm 1)^4$
$y = +\dfrac{1}{a^2}$ ← above (0, 0)
Hence, the point (0, 0) is minimum.
Salamat po sir
In reply to $a^2 y = x^4$ by Jhun Vert
Salamat po sir
How about 9a²y=x(4a+x)³
Yung ans nya po is (a,3a) maximum
Thanks in advance sir
Please create another forum
In reply to Salamat po sir by Francis June E…
Please create another forum post for your 2nd question as moderators won't allow multiple questions in one thread.
Find the maxima and minima
Find the maxima and minima point of the curve y=3x⁴-8x³+6x²