Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 weeks 5 days ago
- Sir what if we want to find…2 weeks 5 days ago
- Hello po! Question lang po…1 month 1 week ago
- 400000=120[14π(D2−10000)]
(…2 months 1 week ago - Use integration by parts for…3 months 1 week ago
- need answer3 months 1 week ago
- Yes you are absolutely right…3 months 1 week ago
- I think what is ask is the…3 months 1 week ago
- $\cos \theta = \dfrac{2}{…3 months 1 week ago
- Why did you use (1/SQ root 5…3 months 1 week ago
Your question don't have
Your question don't have enough details. What are you trying to solve from this equation? Tagging it with Maxima and Minima is not enough information.
Yung Ans. Niya po is (0,0) at
In reply to Your question don't have by Jhun Vert
Yung Ans. Niya po is (0,0) at Minimum.
Yung process sana po sir. Thanks po
Yung process po sana kung
In reply to Your question don't have by Jhun Vert
Yung process po sana kung paano solve.
Yung ans nya po is (0,0) , minimum.
$a^2 y = x^4$
$a^2 y = x^4$
Differentiate
$a^2 y' = 4x^3$
Equate y' = 0 to determine the critical points (maxima or minima)
$a^2 (0) = 4x^3$
$x = 0$
For x = 0
$a^2 y = 0^4$
$y = 0$
Hence,
critical point = (0, 0)
Check the neighboring points to determine whether (0, 0) is minimum or maximum. Set x = ±1:
$a^2 y = (\pm 1)^4$
$y = +\dfrac{1}{a^2}$ ← above (0, 0)
Hence, the point (0, 0) is minimum.
Salamat po sir
In reply to $a^2 y = x^4$ by Jhun Vert
Salamat po sir
How about 9a²y=x(4a+x)³
Yung ans nya po is (a,3a) maximum
Thanks in advance sir
Please create another forum
In reply to Salamat po sir by Francis June E…
Please create another forum post for your 2nd question as moderators won't allow multiple questions in one thread.
Find the maxima and minima
Find the maxima and minima point of the curve y=3x⁴-8x³+6x²