Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…4 days ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…4 days ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt414 days ago
- Thank you so much3 days 10 hours ago
- How did you get the 2.8 mins…3 days 9 hours ago
- How did you get the distance…3 days 9 hours ago


The differential equation $y
The differential equation $y(2-3xy)dx-xdy=0$ has the form $M(x,y)dx+N(x,y)dy=0$, which is of first order and first degree, doesn't seem to fall into a variable-separable, homogenous, or exact type of differential equation. But delving deeper into the equation, we noticed that the given differential equation could be an exact differential equation if we modify it properly.
You're interested in getting the integrating factor of $y(2-3xy)dx-xdy =0$, so here's how.....
To check that the given differential equation is an exact-type, a necessary condition $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ must be satisfied, otherwise, it would be an inexact differential equation.
So....
$$y(2-3xy)dx-xdy=0$$ $$(2y-3xy^2)dx-xdy=0$$ $$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$ $$\frac{\partial}{\partial y}(2y-3xy^2)=\frac{\partial }{\partial x}(-xdy)$$
To get $\frac{\partial M}{\partial y}$:
$$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-3x(2y)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-6xy$$ $$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)= 2-6xy$$
To get $\frac{\partial N}{\partial x}$:
$$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x}$$ $$\frac{\partial (-x)}{\partial x} = -1$$ $$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x} = -1$$
We see that $\frac{\partial}{\partial y}(2y-3xy^2) \neq \frac{\partial }{\partial x}(-x)$
Therefore, the given differential equation is an inexact differential equation, not an exact-type, so we need to convert this inexact differential equation into an exact-type. This is how to do it.
To make an inexact differential equation into an exact-type, multiply an integrating factor $I(x,y)$ to the entire differential equation. Our integrating factor would be $x^p y^q$. Solve for $p$ and $q$ to make it exact.
$$y(2-3xy) dx - xdy = 0$$ $$(2y-3xy^2)dx - xdy = 0$$ $$x^py^q((2y-3xy^2)dx - xdy = 0)$$ $$(2x^py^{q+1} - 3x^{p+1}y^{q+2})dx - (x^{p+1}y^q)dy = 0$$
Then...
$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2x^py^{q+1} - 3x^{p+1}y^{q+2})$$ $$\frac{\partial M}{\partial y} = (q+1)(2x^p)(y^{(q+1)-1})-(q+2)(3x^{p+1})(y^{(q+2)-1})$$ $$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$
And...
$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(- (x^{p+1}y^q))$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^{(p+1)-1}y^q)$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^py^q)$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q$$
Therefore...
$$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q + 0$$
We now solve for $p$ and $q$:
This is a linear equation, two equations and two unknowns...
$$2(q+1) = -(p+1)$$ $$2q+2=-p-1$$ $$2q+p=-1-2$$ $$\color{red}{p+2q=-3}$$
And....
$$\color{red}{-3(q+2)=0}$$ $$-3q-6=0$$ $$\color{red}{\underline{q=-2}}$$
Then...
$$p+2q=-3$$ $$p+2(-2)=-3$$ $$\color{red}{\underline{p=1}}$$
Therefore, the integrating factor that we seek is $\color{green} {I(x,y) = x^py^q = x^1y^{-2} = \frac{x}{y^2}}$.
To verify that inexact differential equation $y(2-3xy)dx-xdy=0$ can be made exact by multiplying it by $\frac{x}{y^2}$, we do this:
$$\left( \frac{x}{y^2}(y(2-3xy)dx-xdy=0)\right)$$ $$\left( \frac{x}{y^2}((2y-3xy^2)dx-xdy=0)\right)$$ $$\left(\frac{2x}{y}-3x^2\right)dx - \frac{x^2}{y^2}dy = 0$$
Then...
$$\frac{\partial M}{\partial y} = \frac{\partial }{\partial y}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial M}{\partial y} = -\frac{2x}{y^2}$$
And...
$$\frac{\partial N}{\partial x} = \frac{\partial }{\partial x}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial N}{\partial x} = -\frac{2x}{y^2}$$
So...
$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$
The integrating factor of $y(2-3xy)dx-xdy=0$ is $\color{green} {\frac{x}{y^2}}$
Alternate solutions are highly encouraged.....
2ydx-3xy2dx-xdy=0
2ydx-3xy2dx-xdy=0
(2ydx-3xy2dx-xdy=0)x/y2
((2yxdx-x2dy)/y2) - 3x2 = 0
Integrate
d(x2/y) - 3x2 = 0
x2/y - x3 = c
Simplify
x2(1-xy) = cy this is your general solution
I hope this helps..
From Fredierick Uy..