## Active forum topics

- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling
- Minima maxima: a²y = x⁴
- Trim and stability

## New forum topics

- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft
- Differentiate trigonometric function
- Integration $\displaystyle \int \sec 2x ~ dx$

## Recent comments

- Mali po ang equation mo…1 week ago
- $x$ is the location where…1 week 1 day ago
- In double integration method…1 week 5 days ago
- Maayo, salamat sa imong…3 weeks 1 day ago
- 24 ft during the 10th second…3 weeks 1 day ago
- The differentiation you need…3 weeks 1 day ago
- Obtain the differential…3 weeks 1 day ago
- Thank you for sharing your…3 weeks 1 day ago
- Based on the differentiation…1 week 5 days ago
- Given that $x + y + xy = 1$,…1 week 5 days ago

## The differential equation $y

The differential equation $y(2-3xy)dx-xdy=0$ has the form $M(x,y)dx+N(x,y)dy=0$, which is of first order and first degree, doesn't seem to fall into a variable-separable, homogenous, or exact type of differential equation. But delving deeper into the equation, we noticed that the given differential equation could be an exact differential equation if we modify it properly.

You're interested in getting the integrating factor of $y(2-3xy)dx-xdy =0$, so here's how.....

To check that the given differential equation is an exact-type, a necessary condition $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ must be satisfied, otherwise, it would be an inexact differential equation.

So....

$$y(2-3xy)dx-xdy=0$$ $$(2y-3xy^2)dx-xdy=0$$ $$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$ $$\frac{\partial}{\partial y}(2y-3xy^2)=\frac{\partial }{\partial x}(-xdy)$$

To get $\frac{\partial M}{\partial y}$:

$$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-3x(2y)$$ $$\frac{\partial }{\partial y}(2y-3xy^2) =2-6xy$$ $$\frac{\partial M}{\partial y} =\frac{\partial }{\partial y}(2y-3xy^2)= 2-6xy$$

To get $\frac{\partial N}{\partial x}$:

$$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x}$$ $$\frac{\partial (-x)}{\partial x} = -1$$ $$\frac{\partial N}{\partial x} =\frac{\partial (-x)}{\partial x} = -1$$

We see that $\frac{\partial}{\partial y}(2y-3xy^2) \neq \frac{\partial }{\partial x}(-x)$

Therefore, the given differential equation is an inexact differential equation, not an exact-type, so we need to convert this inexact differential equation into an exact-type. This is how to do it.

To make an inexact differential equation into an exact-type, multiply an integrating factor $I(x,y)$ to the entire differential equation. Our integrating factor would be $x^p y^q$. Solve for $p$ and $q$ to make it exact.

$$y(2-3xy) dx - xdy = 0$$ $$(2y-3xy^2)dx - xdy = 0$$ $$x^py^q((2y-3xy^2)dx - xdy = 0)$$ $$(2x^py^{q+1} - 3x^{p+1}y^{q+2})dx - (x^{p+1}y^q)dy = 0$$

Then...

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(2x^py^{q+1} - 3x^{p+1}y^{q+2})$$ $$\frac{\partial M}{\partial y} = (q+1)(2x^p)(y^{(q+1)-1})-(q+2)(3x^{p+1})(y^{(q+2)-1})$$ $$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$

And...

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(- (x^{p+1}y^q))$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^{(p+1)-1}y^q)$$ $$\frac{\partial N}{\partial x} = (-1)((p+1)x^py^q)$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q$$

Therefore...

$$\frac{\partial M}{\partial y} = 2(q+1)x^py^q-3(q+2)x^{p+1}y^{q+1}$$ $$\frac{\partial N}{\partial x} = -(p+1)x^py^q + 0$$

We now solve for $p$ and $q$:

This is a linear equation, two equations and two unknowns...

$$2(q+1) = -(p+1)$$ $$2q+2=-p-1$$ $$2q+p=-1-2$$ $$\color{red}{p+2q=-3}$$

And....

$$\color{red}{-3(q+2)=0}$$ $$-3q-6=0$$ $$\color{red}{\underline{q=-2}}$$

Then...

$$p+2q=-3$$ $$p+2(-2)=-3$$ $$\color{red}{\underline{p=1}}$$

Therefore, the integrating factor that we seek is $\color{green} {I(x,y) = x^py^q = x^1y^{-2} = \frac{x}{y^2}}$.

To verify that inexact differential equation $y(2-3xy)dx-xdy=0$ can be made exact by multiplying it by $\frac{x}{y^2}$, we do this:

$$\left( \frac{x}{y^2}(y(2-3xy)dx-xdy=0)\right)$$ $$\left( \frac{x}{y^2}((2y-3xy^2)dx-xdy=0)\right)$$ $$\left(\frac{2x}{y}-3x^2\right)dx - \frac{x^2}{y^2}dy = 0$$

Then...

$$\frac{\partial M}{\partial y} = \frac{\partial }{\partial y}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial M}{\partial y} = -\frac{2x}{y^2}$$

And...

$$\frac{\partial N}{\partial x} = \frac{\partial }{\partial x}\left(\frac{2x}{y}-3x^2\right)$$ $$\frac{\partial N}{\partial x} = -\frac{2x}{y^2}$$

So...

$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$

The integrating factor of $y(2-3xy)dx-xdy=0$ is $\color{green} {\frac{x}{y^2}}$

Alternate solutions are highly encouraged.....

## 2ydx-3xy2dx-xdy=0

2ydx-3xy

^{2}dx-xdy=0(2ydx-3xy

^{2}dx-xdy=0)x/y^{2}((2yxdx-x

^{2}dy)/y^{2}) - 3x^{2}= 0Integrate

d(x

^{2}/y) - 3x^{2}= 0x

^{2}/y - x^{3}= cSimplify

x

^{2}(1-xy) = cy this is your general solutionI hope this helps..

From Fredierick Uy..