# Integral Calculus: Finding the equation of the curve.

3 posts / 0 new
Rexel Reedus
Integral Calculus: Finding the equation of the curve.

Hello, can someone help me solve this problem? I tried working it around but I can't arrive at the correct answer. Thank you!

Problem: Find the equation of the curve for which y''=12/x3 if it passes through (1,0) and is tangent to the line 6x+y=6 at that point.

Answer: xy+6x=6

Source: Elements of Calculus and Analytic Geometry by Reyes and Chua

Jhun Vert

$6x + y = 6$

$6 + y' = 0$

$y' = -6$

$y''=12x^{-3}$

$y' = -6x^{-2} + C_1$   →   Eq (1)

$y = 6x^{-1} + C_1x + C_2$   →   Eq (2)

At the point of tangency (1, 0), y' = -6

From Eq (1)
$-6 = -6 + C_1$

$C_1 = 0$

From Eq (2)
$y = 6x^{-1} + C_2$

$0 = 6 + C_2$

$C_2 = -6$

Thus,
$y = \dfrac{6}{x} - 6$   →   Eq (2)

$xy = 6 - 6x$

$xy + 6x = 6$       answer

Rexel Reedus

Got it now, thanks! ;)

## Add new comment

### Deafult Input

• Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
• Web page addresses and e-mail addresses turn into links automatically.
• Lines and paragraphs break automatically.
• Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and $...$ for displayed mathematics, and $...$ and $...$ for in-line mathematics.

### Plain text

• No HTML tags allowed.
• Lines and paragraphs break automatically.