Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 2 weeks ago
- need answer4 months 2 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
You are interested in listing
You are interested in listing the interval of validities of the third-order differential equation $(\sin x)y'''-3xy''+2y = \tan x$.That explains why you didn't specify initial condition like $y(0) = 4$.
Here's how to get it...
Modifying the differential equation to look like this:
$$y'''+p(x)y''+q(x)y'+r(x)y = g(x)$$
It becomes...
$$(\sin x)y'''-3xy''+2y = \tan x$$ $$\frac{(\sin x)y'''-3xy''+2y = \tan x}{\sin x}$$ $$y'''-\frac{3x}{\sin x} y'' + \frac{2}{\sin x}y = \frac{\tan x}{\sin x}$$ $$y'''-\frac{3x}{\sin x} y'' + \frac{2}{\sin x}y = \frac{1}{\cos x}$$
To determine the intervals, we need to see where the $p(x)$ , $r(x)$, and $g(x)$ to be continuous. We must avoid those points that render $p(x)$ , $r(x)$, and $g(x)$ to be discontinuous. Those points we must avoid are:
Setting $\sin x$ to be zero makes $p(x)$ and $r(x)$ to be discontinuous. Sine function goes to zero every $n\pi $ interval.
$$\sin x = 0 \implies x = \color{red}{n}\pi\,, n \in \mathbb Z$$
Setting $\cos x$ to be zero makes $g(x)$ to be discontinuous. Cosine function goes to zero every $(2n+1)\frac{\pi}{2}$ intervals.
$$\cos x =0 \implies x =(2n+1)\color{blue}{\frac{\pi}{2}}\,, n\in \mathbb Z$$
Therefore, the intervals of the differential equation $(\sin x)y'''-3xy''+2y = \tan x$ would be...
$$\mathbb R \setminus \{n\pi \mid \, n \in \mathbb Z\} \setminus \{(2n+1)\frac{\pi}{2} \mid \, n \in \mathbb Z\}$$
It refers to the fact that the solution set is $\mathbb R$ minus than the values $2nπ$ and $(2n+1)\frac{π}{2}$. It is the difference of sets. It an has interval ranging from $-\infty$ to $\infty$, excluding $2nπ$ and $(2n+1)\frac{π}{2}.$