Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week ago
- Sir what if we want to find…1 week ago
- Hello po! Question lang po…3 weeks 4 days ago
- 400000=120[14π(D2−10000)]
(…1 month 4 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 4 weeks ago
- I think what is ask is the…2 months 4 weeks ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
hi! can you provide the
hi! can you provide the answer? So that we can verify it.
Here's mine:
Here's mine:
I recognize that the differential equation above is a homogenous type, so we need the substitutions $x = vy$ and $dx = vdy + ydv$ to get the solutions to these type of differential equations.
Armed with these hints, the differential equation $x\space dx + (sin \left(\frac{y}{x}\right))^2(y\space dx - x \space dy) = 0$ becomes:
$$x\space dx + \left(sin \left(\frac{y}{x}\right)\right)^2(y\space dx - x \space dy) = 0$$ $$x\space dx + y \left(sin \left(\frac{y}{x}\right)\right)^2 \space dx - x \left(sin \left(\frac{y}{x}\right)\right)^2 \space dy) = 0$$ $$vy\space (vdy + ydv) + y \left(sin \left(\frac{y}{vy}\right)\right)^2 \space (vdy + ydv) - vy \left(sin \left(\frac{y}{vy}\right)\right)^2 \space dy = 0$$ $$v^2y\space dy + vy^2\space dv + vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy+ y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv - vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy = 0$$ $$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$
It is apparent that we can put $v$'s on left side and $y$'s on right side. It looks like this:
$$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$ $$ vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = -v^2y\space dy$$
Divide both left and right sides of the equation by $y^2$, it becomes:
$$ v\space dv + \left(sin\left(\frac{1}{v} \right) \right)^2 dv = -\frac{v^2}{y}\space dy$$
Divide both left and right sides of the equation by $v^2$, it becomes:
$$ \frac{v}{dv} + \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = -\frac{1}{y}\space dy$$
Get the integrals of the terms of the differential equation above, it becomes:
$$ \int \frac{v}{dv} + \int \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = \int -\frac{1}{y}\space dy$$ $$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$
Then, rearranging the expression above to make sense:
$$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \space v^{-1} + ln \space y^{-1} + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \left(\frac{c}{vy} \right)$$
Then do this:
$$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \left(\frac{c}{vy} \right)$$ $$\frac{-4 + 2v \left( sin \left(\frac{2}{v}\right) \right) }{8v} = ln \left( \frac{c}{vy} \right)$$
Returning the original values, it becomes:
$$\frac{-4 + 2\left(\frac{x}{y}\right) \left( sin \left(\frac{2}{\frac{x}{y}}\right) \right) }{8 \left( \frac{x}{y} \right)} = ln \left( \frac{c}{\left(\frac{x}{y} \right) y} \right)$$ $$\left(\frac{y}{8x}\right) \left( -4 + \frac{2x}{y} sin \left( \frac{2y}{x} \right) \right) = ln \left( \frac{c}{x}\right) $$ $$\frac{-y}{2x} + \frac{1}{4} sin \left( \frac{2y}{x} \right) = ln \left( \frac{c}{x}\right) $$
Ultimately, the solution of the differential equation I got is:
$$xe^{\left(\frac{-y}{2x} + \frac{1}{4} sin \left( \frac{2y}{x} \right) \right)} = c$$
Hope it helps....
$x \, dx + \left[ \sin^2
You may check this out.
$x \, dx + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] (y \, dx - x \, dy) = 0$
$\dfrac{x \, dx}{x^2} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] \left( \dfrac{x \, dy - y \, dx}{x^2} \right) = 0$
$\cos 2\theta = 1 - 2 \sin^2 \theta$
$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$
$\dfrac{dx}{x} - \dfrac{1}{2} \left[ 1 - \cos \left( \dfrac{2y}{x} \right) \right] d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{2} \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{2y}{x} \right) = 0$
$\displaystyle \int \dfrac{dx}{x} - \dfrac{1}{2} \int d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \int \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{2y}{x} \right) = 0$
$\ln x - \dfrac{y}{2x} + \dfrac{1}{4} \sin \left( \dfrac{2y}{x} \right) = c$
Basically, this answer is similar to the answer in #3 but expressed in different form.
Never thought of that. Nice
In reply to $x \, dx + \left[ \sin^2 by Jhun Vert
Never thought of that. Nice approach!