I recognize that the differential equation above is a homogenous type, so we need the substitutions $x = vy$ and $dx = vdy + ydv$ to get the solutions to these type of differential equations.
Armed with these hints, the differential equation $x\space dx + (sin \left(\frac{y}{x}\right))^2(y\space dx - x \space dy) = 0$ becomes:
$$x\space dx + \left(sin \left(\frac{y}{x}\right)\right)^2(y\space dx - x \space dy) = 0$$ $$x\space dx + y \left(sin \left(\frac{y}{x}\right)\right)^2 \space dx - x \left(sin \left(\frac{y}{x}\right)\right)^2 \space dy) = 0$$ $$vy\space (vdy + ydv) + y \left(sin \left(\frac{y}{vy}\right)\right)^2 \space (vdy + ydv) - vy \left(sin \left(\frac{y}{vy}\right)\right)^2 \space dy = 0$$ $$v^2y\space dy + vy^2\space dv + vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy+ y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv - vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy = 0$$ $$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$
It is apparent that we can put $v$'s on left side and $y$'s on right side. It looks like this:
$$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$ $$ vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = -v^2y\space dy$$
Divide both left and right sides of the equation by $y^2$, it becomes:
$$ v\space dv + \left(sin\left(\frac{1}{v} \right) \right)^2 dv = -\frac{v^2}{y}\space dy$$
Divide both left and right sides of the equation by $v^2$, it becomes:
$$ \frac{v}{dv} + \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = -\frac{1}{y}\space dy$$
Get the integrals of the terms of the differential equation above, it becomes:
$$ \int \frac{v}{dv} + \int \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = \int -\frac{1}{y}\space dy$$ $$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$
Then, rearranging the expression above to make sense:
$$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \space v^{-1} + ln \space y^{-1} + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \left(\frac{c}{vy} \right)$$
Forum posts (unless otherwise specified) licensed under a Creative Commons Licence. All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.
hi! can you provide the
hi! can you provide the answer? So that we can verify it.
Here's mine:
Here's mine:
I recognize that the differential equation above is a homogenous type, so we need the substitutions $x = vy$ and $dx = vdy + ydv$ to get the solutions to these type of differential equations.
Armed with these hints, the differential equation $x\space dx + (sin \left(\frac{y}{x}\right))^2(y\space dx - x \space dy) = 0$ becomes:
$$x\space dx + \left(sin \left(\frac{y}{x}\right)\right)^2(y\space dx - x \space dy) = 0$$ $$x\space dx + y \left(sin \left(\frac{y}{x}\right)\right)^2 \space dx - x \left(sin \left(\frac{y}{x}\right)\right)^2 \space dy) = 0$$ $$vy\space (vdy + ydv) + y \left(sin \left(\frac{y}{vy}\right)\right)^2 \space (vdy + ydv) - vy \left(sin \left(\frac{y}{vy}\right)\right)^2 \space dy = 0$$ $$v^2y\space dy + vy^2\space dv + vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy+ y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv - vy\left(sin\left(\frac{1}{v} \right) \right)^2 dy = 0$$ $$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$
It is apparent that we can put $v$'s on left side and $y$'s on right side. It looks like this:
$$v^2y\space dy + vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = 0$$ $$ vy^2\space dv + y^2\left(sin\left(\frac{1}{v} \right) \right)^2 dv = -v^2y\space dy$$
Divide both left and right sides of the equation by $y^2$, it becomes:
$$ v\space dv + \left(sin\left(\frac{1}{v} \right) \right)^2 dv = -\frac{v^2}{y}\space dy$$
Divide both left and right sides of the equation by $v^2$, it becomes:
$$ \frac{v}{dv} + \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = -\frac{1}{y}\space dy$$
Get the integrals of the terms of the differential equation above, it becomes:
$$ \int \frac{v}{dv} + \int \frac{\left(sin\left(\frac{1}{v} \right) \right)^2}{v^2} dv = \int -\frac{1}{y}\space dy$$ $$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$
Then, rearranging the expression above to make sense:
$$ln \space v + \left(-\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4}\right) = - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = -ln \space v - ln \space y + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \space v^{-1} + ln \space y^{-1} + ln \space c$$ $$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \left(\frac{c}{vy} \right)$$
Then do this:
$$ -\frac{1}{2v} + \frac{sin \left(\frac{2}{v}\right)}{4} = ln \left(\frac{c}{vy} \right)$$ $$\frac{-4 + 2v \left( sin \left(\frac{2}{v}\right) \right) }{8v} = ln \left( \frac{c}{vy} \right)$$
Returning the original values, it becomes:
$$\frac{-4 + 2\left(\frac{x}{y}\right) \left( sin \left(\frac{2}{\frac{x}{y}}\right) \right) }{8 \left( \frac{x}{y} \right)} = ln \left( \frac{c}{\left(\frac{x}{y} \right) y} \right)$$ $$\left(\frac{y}{8x}\right) \left( -4 + \frac{2x}{y} sin \left( \frac{2y}{x} \right) \right) = ln \left( \frac{c}{x}\right) $$ $$\frac{-y}{2x} + \frac{1}{4} sin \left( \frac{2y}{x} \right) = ln \left( \frac{c}{x}\right) $$
Ultimately, the solution of the differential equation I got is:
$$xe^{\left(\frac{-y}{2x} + \frac{1}{4} sin \left( \frac{2y}{x} \right) \right)} = c$$
Hope it helps....
$x \, dx + \left[ \sin^2
You may check this out.
$x \, dx + \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] (y \, dx - x \, dy) = 0$
$\dfrac{x \, dx}{x^2} - \left[ \sin^2 \left( \dfrac{y}{x} \right) \right] \left( \dfrac{x \, dy - y \, dx}{x^2} \right) = 0$
$\cos 2\theta = 1 - 2 \sin^2 \theta$
$\sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)$
$\dfrac{dx}{x} - \dfrac{1}{2} \left[ 1 - \cos \left( \dfrac{2y}{x} \right) \right] d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{2} \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{y}{x} \right) = 0$
$\dfrac{dx}{x} - \dfrac{1}{2} d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{2y}{x} \right) = 0$
$\displaystyle \int \dfrac{dx}{x} - \dfrac{1}{2} \int d\left( \dfrac{y}{x} \right) + \dfrac{1}{4} \int \cos \left( \dfrac{2y}{x} \right) \, d\left( \dfrac{2y}{x} \right) = 0$
$\ln x - \dfrac{y}{2x} + \dfrac{1}{4} \sin \left( \dfrac{2y}{x} \right) = c$
Basically, this answer is similar to the answer in #3 but expressed in different form.
Never thought of that. Nice
In reply to $x \, dx + \left[ \sin^2 by Jhun Vert
Never thought of that. Nice approach!