# DIIFERENTIAL EQUATION: $(x^2 + y^2) dx + x (3x^2 - 5y^2) dy = 0$

5 posts / 0 new
Sydney Sales
DIIFERENTIAL EQUATION: $(x^2 + y^2) dx + x (3x^2 - 5y^2) dy = 0$

( x^2 + y^2 ) dx + x (3x^2 - 5y^2 ) dy = 0

Jhun Vert

$(x^2 + y^2)\,dx + x(3x^2 - 5y^2)\,dy = 0$

The variables are not separable
The equation is not homogeneous

Try:

$\dfrac{dy}{dx} + \dfrac{x^2 + y^2}{x(3x^2 - 5y^2)} = 0$

$\dfrac{dx}{dy} + \dfrac{x(3x^2 - 5y^2)}{x^2 + y^2} = 0$

The equation is not linear.

Try:

$M = x^2 + y^2$   →   $\dfrac{\partial M}{\partial y} = 2y$

$N = 3x^3 - 5xy^2$   →   $\dfrac{\partial N}{\partial x} = 9x^2 - 5y^2$

The equation is not exact

Try:

$\dfrac{\dfrac{\partial M}{\partial y} - \dfrac{\partial N}{\partial x}}{N} = \dfrac{2y - (9x^2 - 5y^2)}{3x^3 - 5xy^2}$

$\dfrac{\dfrac{\partial M}{\partial y} - \dfrac{\partial N}{\partial x}}{N} = \dfrac{2y - 9x^2 + 5y^2}{3x^3 - 5xy^2}$

The equation does not have an integrating factor that is a function of x alone

Try:

$\dfrac{\dfrac{\partial M}{\partial y} - \dfrac{\partial N}{\partial x}}{M} = \dfrac{2y - (9x^2 - 5y^2)}{x^2 + y^2}$

$\dfrac{\dfrac{\partial M}{\partial y} - \dfrac{\partial N}{\partial x}}{N} = \dfrac{2y - 9x^2 + 5y^2}{x^2 + y^2}$

The equation does not have an integrating factor that is a function of y alone

Wala pa akong nakitang solution. Kung meron ka na, pease share.

Sydney Sales

eto po yung answer:

2y^5 - 2x^2 ( y^3) + 3x = 0

Jhun Vert

Are you sure your equation is correct? And based on your answer key, there should be an initial condition because there is no constant c in your answer.

Helpme

The equation is wrong it should be y(x^2+y^2)dx+x(3x^2-5y^2)dy=0, when x=2 , y=1

## Add new comment

### Deafult Input

• Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
• Web page addresses and e-mail addresses turn into links automatically.
• Lines and paragraphs break automatically.
• Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and $...$ for displayed mathematics, and $...$ and $...$ for in-line mathematics.

### Plain text

• No HTML tags allowed.
• Lines and paragraphs break automatically.