## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- Use integration by parts for…3 weeks ago
- need answer3 weeks ago
- Yes you are absolutely right…3 weeks 3 days ago
- I think what is ask is the…3 weeks 3 days ago
- $\cos \theta = \dfrac{2}{…3 weeks 4 days ago
- Why did you use (1/SQ root 5…3 weeks 4 days ago
- How did you get the 300 000pi3 weeks 4 days ago
- It is not necessary to…3 weeks 5 days ago
- Draw a horizontal time line…4 weeks 1 day ago
- Mali po ang equation mo…1 month 1 week ago

## Here it is.

Here it is.

To eliminate the constant of the equation

$$y = c - \frac{\ln x}{x}$$

Implicitly differentiating the above equation:

$$y' = 0 - d \left (\frac{\ln x}{x}\right)$$ $$y' = 0- \left( \frac{1-\ln x}{x^2}\right)$$ $$y' = \frac{-1+\ln x}{x^2}$$ $$x^2 y' = -1 + \ln x$$

Ultimately, we got a differential equation $x^2 y' = -1 + \ln x.$

Hope it helps.