Differential Equation: Application of D.E: Exponential Decay

Ednalyn DG Carpio's picture

img_20170316_085545.jpg

Ednalyn DG Carpio's picture

Differential Equation: Application of D.E: Exponential Decay

Radium decomposes at the rate proportional to the quantity of the radium present. Suppose that it is found that in 15 and 25 yrs after decomposition has started, approximately 81% and 70.4% of a certain quantity of radium has been left after decomposition. (a) Find an expression for the amount of radium present as a function of time. (b) determine approximately how long will it take for one-half the original amount of the radium to decompose.

Jhun Vert's picture

Let x = amount of radium at any time.
$\dfrac{dx}{dt} = kt$

$\dfrac{dx}{x} = k \, dt$

$\displaystyle \int \dfrac{dx}{x} = k \int dt$

$\ln x = kt + c$
 

When t = 15 yrs, x = 81%
$\ln 81 = 15k + c$   ←   (1)
 

When t = 25, x = 70.4%
$\ln 70.4 = 25k + c$   ←   (2)
 

From (1) and (2)
$k = -0.014$

$c = 4.605$
 

Hence,
$\ln x = -0.014t + 4.605$       answer for part (a)

$t = \dfrac{4.605 - \ln x}{0.014}$
 

For x = 50%
$t = \dfrac{4.605 - \ln 50}{0.014}$

$t = 49.5 ~ \text{years}$       answer for part (b)

Jhun Vert's picture

Another solution (By Calculator - CASIO fx-991ES PLUS):
MODE 3 5

X Y
15 81
25 70.4

AC
$t = 50\hat{x} = 59.4 ~ \text{years}$

Note:
$\hat{x}$ = SHIFT 1 5 4

Add new comment

Deafult Input

  • Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
  • Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and \[...\] for displayed mathematics, and $...$ and \(...\) for in-line mathematics.

Plain text

  • No HTML tags allowed.
  • Lines and paragraphs break automatically.