Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week ago
- Sir what if we want to find…1 week ago
- Hello po! Question lang po…3 weeks 4 days ago
- 400000=120[14π(D2−10000)]
(…1 month 4 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 4 weeks ago
- I think what is ask is the…2 months 4 weeks ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
What do you need to do with
What do you need to do with this equation? You just write the equation but there is no instruction.
Can i solve this using homo?
In reply to What do you need to do with by Jhun Vert
Can i solve this using homo? Our professor only gave that equation and nothing else.
Nope use suggested
In reply to Can i solve this using homo? by Helpme
Nope use suggested substitution method. since the linear equation is parallel, then use u = x + 2y
$$(x+2y-1)dx-(x+2y-5)dy=0$$
$$(x+2y-1)dx-(x+2y-5)dy=0$$
Let $u = x + 2y - 1 \rightarrow du = dx + 2dy$ which gives $dx = du - 2dy$
Substituting to the equation
$$\begin{eqnarray}
u(du - 2dy) - (u - 4)dy &=& 0\\
u du - (3u - 4)dy &=& 0\\
\dfrac{udu}{3u-4} - dy &=& 0\\
\dfrac{1}{3} \left(1 - \dfrac{4}{3u - 4}\right)du - dy &=& 0\\
\displaystyle{\int \dfrac{1}{3} \left(1 - \dfrac{4}{3u - 4}\right)}du - \int dy &=& C\\
\dfrac{1}{3}u - \dfrac{4}{3} \ln|3u - 4| - y &=& C\\
u - 4 \ln|3u - 4| - 3y &=& C\\
4 \ln|3u - 4| &=& u - 3y + C\\
4 \ln|3(x + 2y - 1) - 4| &=& x + 2y - 3y + C\\
4 \ln|3x + 6y - 7| &=& x - y + C\\
3x + 6y - 7 &=& Ce^{\frac{x-y}{4}} (ANSWER)
\end{eqnarray}$$
P.S. There can also be other forms of the general solution