Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week 1 day ago
- Sir what if we want to find…1 week 1 day ago
- Hello po! Question lang po…3 weeks 5 days ago
- 400000=120[14π(D2−10000)]
(…2 months ago - Use integration by parts for…2 months 4 weeks ago
- need answer2 months 4 weeks ago
- Yes you are absolutely right…3 months ago
- I think what is ask is the…3 months ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
Re: Centroid
Subscript c is for circle and subscript e is for ellipse:
$A_c = \frac{1}{4}\pi a^2$
$A_e = \frac{1}{4}\pi ab$
$A = A_c - A_e = \frac{1}{4}\pi a(a - b)$
$\bar{x}_c = \bar{y}_c = \dfrac{4a}{3\pi}$
$\bar{x}_e = \dfrac{4a}{3\pi}$
$\bar{y}_e = \dfrac{4b}{3\pi}$
$AX_G = \Sigma A_n x_n$
$\frac{1}{4}\pi a(a - b)X_G = \frac{1}{4}\pi a^2 \left( \dfrac{4a}{3\pi} \right) - \frac{1}{4}\pi ab \left( \dfrac{4a}{3\pi} \right)$
$\frac{1}{4}\pi a(a - b)X_G = \dfrac{a^3}{3} - \dfrac{a^2 b}{3}$
$\frac{1}{4}\pi a(a - b)X_G = \frac{1}{3}a^2(a - b)$
$\frac{1}{4}\pi X_G = \frac{1}{3}a$
$X_G = \dfrac{4a}{3\pi}$ answer
$AY_G = \Sigma A_n y_n$
$\frac{1}{4}\pi a(a - b)Y_G = \frac{1}{4}\pi a^2 \left( \dfrac{4a}{3\pi} \right) - \frac{1}{4}\pi ab \left( \dfrac{4b}{3\pi} \right)$
$\frac{1}{4}\pi a(a - b)Y_G = \dfrac{a^3}{3} - \dfrac{ab^2}{3}$
$\frac{1}{4}\pi a(a - b)Y_G = \frac{1}{3}a(a^2 - b^2)$
$\frac{1}{4}\pi a(a - b)Y_G = \frac{1}{3}a(a - b)(a + b)$
$\frac{1}{4}\pi Y_G = \frac{1}{3}(a + b)$
$Y_G = \dfrac{4(a + b)}{3\pi}$ answer
Re: Centroid of area in the first quadrant bounded by circle...
Solution by detailed integration:
$x^2 + y^2 = a^2$
$y^2 = a^2 - x^2$
$y = \sqrt{a^2 - x^2}$ ← upper-end of the strip
$y_U = \sqrt{a^2 - x^2}$
$\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$
$\dfrac{y^2}{b^2} = 1 - \dfrac{x^2}{a^2}$
$\dfrac{y^2}{b^2} = \dfrac{a^2 - x^2}{a^2}$
$y^2 = \dfrac{b^2}{a^2}(a^2 - x^2)$
$y = \dfrac{b}{a}\sqrt{a^2 - x^2}$ ← lower-end of the strip
$y_L = \dfrac{b}{a}\sqrt{a^2 - x^2}$
$dA = y \, dx = (y_U - y_L) \, dx = \left( \sqrt{a^2 - x^2} - \dfrac{b}{a}\sqrt{a^2 - x^2} \right) \, dx$
$\displaystyle A = \int_0^a \left( \sqrt{a^2 - x^2} - \dfrac{b}{a}\sqrt{a^2 - x^2} \right) \, dx$
$\displaystyle A = \int_0^a \sqrt{a^2 - x^2} \left( 1 - \dfrac{b}{a} \right) \, dx$
$\displaystyle A = \int_0^a \sqrt{a^2 - x^2} \left( \dfrac{a - b}{a} \right) \, dx$
$\displaystyle A = \dfrac{a - b}{a} \int_0^a \sqrt{a^2 - x^2} \, dx$
x = a sin θ
dx = a cos θ dθ
When x = 0, θ = 0
When x = a, θ = π /2
$\displaystyle A = \dfrac{a - b}{a} \int_0^{\pi/2} \sqrt{a^2 - a^2 \sin^2 \theta} \, (a \cos \theta \, d\theta)$
$\displaystyle A = (a - b) \int_0^{\pi/2} \sqrt{a^2 - a^2 \sin^2 \theta} \, (\cos \theta \, d\theta)$
$\displaystyle A = (a - b) \int_0^{\pi/2} \sqrt{a^2(1 - \sin^2 \theta)} \, (\cos \theta \, d\theta)$
$\displaystyle A = (a - b) \int_0^{\pi/2} \sqrt{a^2 \cos^2 \theta} \, (\cos \theta \, d\theta)$
$\displaystyle A = (a - b) \int_0^{\pi/2} a \cos \theta \, (\cos \theta \, d\theta)$
$\displaystyle A = a (a - b) \int_0^{\pi/2} \cos^2 \theta \, d\theta$
$\displaystyle A = a(a - b) \int_0^{\pi/2} \frac{1}{2}(1 + \cos 2\theta) \, d\theta$
$A = a(a - b) \left[ \dfrac{1}{2} \left( \theta - \dfrac{\sin 2\theta}{2} \right) \right]_0^{\pi/2}$
$A = \dfrac{a(a - b)}{2} \left[ \left( \dfrac{\pi}{2} - \dfrac{\sin \pi}{2} \right) - \left( 0 - \dfrac{\sin 0}{2} \right) \right]$
$A = \dfrac{a(a - b)}{2} \left( \dfrac{\pi}{2} \right)$
$A = \frac{1}{4}\pi a(a - b)$
$\displaystyle AX_G = \int_a^b x_c \, dA$
$\displaystyle AX_G = \int_a^b x_c (y_U - y_L) \, dx$
$\displaystyle \dfrac{\pi a(a - b)}{4}X_G = \int_0^a x \, \left( \sqrt{a^2 - x^2} - \dfrac{b}{a}\sqrt{a^2 - x^2} \right) \, dx$
$\displaystyle \dfrac{\pi a(a - b)}{4}X_G = \int_0^a (a^2 - x^2)^{1/2} (x \, dx) - \dfrac{b}{a}\int_0^a (a^2 - x^2)^{1/2} (x \, dx)$
$\displaystyle \dfrac{\pi a(a - b)}{4}X_G = -\frac{1}{2}\int_0^a (a^2 - x^2)^{1/2} (-2x \, dx) + \dfrac{b}{2a}\int_0^a (a^2 - x^2)^{1/2} (-2x \, dx)$
$\dfrac{\pi a(a - b)}{4}X_G = -\dfrac{1}{2} \left[ \dfrac{(a^2 - x^2)^{3/2}}{3/2} \right]_0^a + \dfrac{b}{2a} \left[ \dfrac{(a^2 - x^2)^{3/2}}{3/2} \right]_0^a$
$\dfrac{\pi a(a - b)}{4}X_G = -\dfrac{1}{3} \left[ (a^2 - a^2)^{3/2} - (a^2 - 0^2)^{3/2} \right] + \dfrac{b}{3a} \left[ (a^2 - a^2)^{3/2} - (a^2 - 0^2)^{3/2} \right]$
$\dfrac{\pi a(a - b)}{4}X_G = -\dfrac{1}{3}(-a^3) + \dfrac{b}{3a}(-a^3)$
$\dfrac{\pi a(a - b)}{4}X_G = \dfrac{a^3}{3} - \dfrac{a^2b}{3}$
$\dfrac{\pi a(a - b)}{4}X_G = \dfrac{a^2}{3}(a - b)$
$\dfrac{\pi}{4}X_G = \dfrac{a}{3}$
$X_G = \dfrac{4a}{3\pi}$ answer
$\displaystyle AY_G = \int_a^b y_c \, dA$
$\displaystyle AY_G = \int_{x_1}^{x_2} \left( \dfrac{y_U + y_L}{2} \right) \left( y_U - y_L \right) \, dx$
$\displaystyle AY_G = \dfrac{1}{2} \int_{x_1}^{x_2} \left( {y_U}^2 - {y_L}^2 \right) \, dx$
$\displaystyle \dfrac{\pi a(a - b)}{4}Y_G = \dfrac{1}{2} \int_0^a \left[ (a^2 - x^2) - \dfrac{b^2}{a^2}(a^2 - x^2) \right] \, dx$
$\displaystyle \dfrac{\pi a(a - b)}{4}Y_G = \dfrac{1}{2} \int_0^a (a^2 - x^2)\left[ 1 - \dfrac{b^2}{a^2} \right] \, dx$
$\displaystyle \dfrac{\pi a(a - b)}{4}Y_G = \dfrac{1}{2} \left( 1 - \dfrac{b^2}{a^2} \right) \int_0^a (a^2 - x^2) \, dx$
$\dfrac{\pi a(a - b)}{4}Y_G = \dfrac{1}{2} \left( \dfrac{a^2 - b^2}{a^2} \right) \left[ a^2x - \dfrac{x^3}{3} \right]_0^a$
$\dfrac{\pi a(a - b)}{4}Y_G = \dfrac{1}{2} \left[ \dfrac{(a - b)(a + b)}{a^2} \right] \left[ \dfrac{2a^3}{3} \right]$
$\dfrac{\pi a(a - b)}{4}Y_G = \dfrac{a(a - b)(a + b)}{3}$
$\dfrac{\pi}{4}Y_G = \dfrac{a + b}{3}$
$Y_G = \dfrac{4(a + b)}{3\pi}$ answer