## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- Hello po! Question lang po…1 week 3 days ago
- 400000=120[14π(D2−10000)]

(…1 month 2 weeks ago - Use integration by parts for…2 months 1 week ago
- need answer2 months 1 week ago
- Yes you are absolutely right…2 months 2 weeks ago
- I think what is ask is the…2 months 2 weeks ago
- $\cos \theta = \dfrac{2}{…2 months 2 weeks ago
- Why did you use (1/SQ root 5…2 months 2 weeks ago
- How did you get the 300 000pi2 months 2 weeks ago
- It is not necessary to…2 months 2 weeks ago

## Re: Equation of line

$x^2 + 2y^2 - 2xy - x = 0$

At the points where it crosses the x-axis, y = 0

$x^2 - x = 0$

$x(x - 1) = 0$

$x = 0 ~ \text{and} ~ 1$ ← hence, x-intercepts are (0, 0) and (1, 0)

Equation of tangent at any point (x

_{1}, y_{1})$xx_1 + 2yy_1 - 2\left( \dfrac{xy_1 + yx_1}{2} \right) - \left( \dfrac{x + x_1}{2} \right) = 0$

$xx_1 + 2yy_1 - xy_1 - yx_1 - \frac{1}{2}x - \frac{1}{2}x_1 = 0$

At (0, 0), x

_{1}= 0 and y_{1}= 0$x = 0$ ← the y-axis

The equation of normal is therefore the x-axis

$y = 0$

answerAt (1, 0), x

_{1}= 1 and y_{1}= 0$x - y - \frac{1}{2}x - \frac{1}{2} = 0$

$\frac{1}{2}x - y - \frac{1}{2} = 0$

$y = \frac{1}{2}x - \frac{1}{2}$ ← equation of tangent

For normal line, the slope m = -2

$y - y_1 = m(x - x_1)$

$y - 0 = -2(x - 1)$

$y = -2x + 2$

$y + 2x - 2 = 0$

answerYou can also use Calculus to find the slopes of the tangent:

$x^2 + 2y^2 - 2xy - x = 0$

$2x + 4y \, y' - 2(xy' + y) - 1 = 0$

$2x + (4y - 2x) \, y' - 2y - 1 = 0$

$y' = \dfrac{1 + 2y - 2x}{4y - 2x}$

At (0, 0)

For normal line, the slope is horizontal line or m = 0

$y - y_1 = m(x - x_1)$

$y - 0 = 0(x - 0)$

$y = 0$

answerAt (1, 0)

For normal line, the slope m = -2

$y - y_1 = m(x - x_1)$

$y - 0 = -2(x - 1)$

$y = -2x + 2$

$y + 2x - 2 = 0$

answer