analytic geometry
New forum topics
- Please help me solve this problem: Moment capacity of a rectangular timber beam
- Solid Mensuration: Prismatoid
- Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
- Differential Equation: y' = x^3 - 2xy, where y(1)=1 and y' = 2(2x-y) that passes through (0,1)
- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates: Question for Problem #12
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: y=ax³+bx²+cx+d
Re: analytic geometry
Center (h, k)
$2h - 18k = -25$
$k = \dfrac{2h + 25}{18}$
Distance from (h, k) to 2x + y = 1
$d_1 = \dfrac{2h + k - 1}{\sqrt{2^2 + 1^2}}$
$d_1 = \dfrac{2h + k - 1}{\sqrt{5}}$
Distance from (h, k) to 2x + 4y = 3
$d_2 = \dfrac{2h + 4k - 3}{\sqrt{2^2 + 4^2}}$
$d_2 = \dfrac{2h + 4k - 3}{2\sqrt{5}}$
Radius of circle r = d1 = d2
$d_1 = d_2$
$\dfrac{2h + k - 1}{\sqrt{5}} = \dfrac{2h + 4k - 3}{2\sqrt{5}}$
$2(2h + k - 1) = 2h + 4k - 3$
$2h - 2k + 1 = 0$
$2h - 2\left( \dfrac{2h + 25}{18} \right) + 1 = 0$
$18h - (2h + 25) + 9 = 0$
$h = 1$
$k = \dfrac{2(1) + 25}{18}$
$k = \frac{3}{2}$
$r = \dfrac{2(1) + \frac{3}{2} - 1}{\sqrt{5}}$
$r = \frac{1}{2}\sqrt{5}$
Equation of the circle
$(x - h)^2 + (y - k)^2 = r^2$
$(x - 1)^2 + (y - \frac{3}{2})^2 = (\frac{1}{2}\sqrt{5})^2$
$(x^2 - 2x + 1) + (y^2 - 3y + \frac{9}{4}) = \frac{5}{4}$
$x^2 + y^2 - 2x - 3y + 2 = 0$
Re: analytic geometry
thank you po!