Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month ago
- Sir what if we want to find…1 month ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 2 weeks ago
- need answer3 months 2 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
Re: analytic geometry
Center (h, k)
$2h - 18k = -25$
$k = \dfrac{2h + 25}{18}$
Distance from (h, k) to 2x + y = 1
$d_1 = \dfrac{2h + k - 1}{\sqrt{2^2 + 1^2}}$
$d_1 = \dfrac{2h + k - 1}{\sqrt{5}}$
Distance from (h, k) to 2x + 4y = 3
$d_2 = \dfrac{2h + 4k - 3}{\sqrt{2^2 + 4^2}}$
$d_2 = \dfrac{2h + 4k - 3}{2\sqrt{5}}$
Radius of circle r = d1 = d2
$d_1 = d_2$
$\dfrac{2h + k - 1}{\sqrt{5}} = \dfrac{2h + 4k - 3}{2\sqrt{5}}$
$2(2h + k - 1) = 2h + 4k - 3$
$2h - 2k + 1 = 0$
$2h - 2\left( \dfrac{2h + 25}{18} \right) + 1 = 0$
$18h - (2h + 25) + 9 = 0$
$h = 1$
$k = \dfrac{2(1) + 25}{18}$
$k = \frac{3}{2}$
$r = \dfrac{2(1) + \frac{3}{2} - 1}{\sqrt{5}}$
$r = \frac{1}{2}\sqrt{5}$
Equation of the circle
$(x - h)^2 + (y - k)^2 = r^2$
$(x - 1)^2 + (y - \frac{3}{2})^2 = (\frac{1}{2}\sqrt{5})^2$
$(x^2 - 2x + 1) + (y^2 - 3y + \frac{9}{4}) = \frac{5}{4}$
$x^2 + y^2 - 2x - 3y + 2 = 0$
Re: analytic geometry
thank you po!