Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…5 days 1 hour ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…5 days 1 hour ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt415 days 1 hour ago
- Thank you so much4 days 11 hours ago
- How did you get the 2.8 mins…4 days 10 hours ago
- How did you get the distance…4 days 10 hours ago


We can use the geometric
We can use the geometric distribution to get the probability of an event (success) occurring after a number of failures.
If repeated independent trials can result in a success with probability $p$ and a failure with probability $q = 1 - p$, then the probability distribution of the random variable $X$, the number of trials on which the first success occurs, is:
$$g(x;p) = pq^{x-1}$$
and $x = 1,2,3,4,5,.....$
In this context, the first success is getting three consecutive heads or three consecutive tails in flipping coins. The probability of getting a head (or tail) in coin toss is $p = 0.5$. The probability that the first success occurs after flipping the coin four times would be:
$$g(x;p) = pq^{x-1}$$ $$g(4;0.5) = 0.5(1-0.5)^{(4)-1} = 0.0625 $$
Therefore, the probability that the game will end on the fourth throw is $\color{green}{6.25 \%}$
Alternate solutions are encouraged....