Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 3 weeks ago
- need answer4 months 3 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
We can use the geometric
We can use the geometric distribution to get the probability of an event (success) occurring after a number of failures.
If repeated independent trials can result in a success with probability $p$ and a failure with probability $q = 1 - p$, then the probability distribution of the random variable $X$, the number of trials on which the first success occurs, is:
$$g(x;p) = pq^{x-1}$$
and $x = 1,2,3,4,5,.....$
In this context, the first success is getting three consecutive heads or three consecutive tails in flipping coins. The probability of getting a head (or tail) in coin toss is $p = 0.5$. The probability that the first success occurs after flipping the coin four times would be:
$$g(x;p) = pq^{x-1}$$ $$g(4;0.5) = 0.5(1-0.5)^{(4)-1} = 0.0625 $$
Therefore, the probability that the game will end on the fourth throw is $\color{green}{6.25 \%}$
Alternate solutions are encouraged....