sqrt(x-sqrt(1-x)) = 1-sqrt(x)

solve for x

$\sqrt{x - \sqrt{1 - x}} = 1 - \sqrt{x}$

$x - \sqrt{1 - x} = \left( 1 - \sqrt{x} \right)^2$

$x - \sqrt{1 - x} = 1 - 2\sqrt{x} + x$

$\sqrt{1 - x} = 2\sqrt{x} - 1$

$1 - x = \left( 2\sqrt{x} - 1 \right)^2$

$1 - x = 4x - 4\sqrt{x} + 1$

$4\sqrt{x} = 5x$

$16x = 25x^2$

$16 = 25x$

$x = \dfrac{16}{25}$

Pwde po ba idirect sa calcu?

Yes...

You can try th symbolab app. I haven't tried this problem on that app but I guess it'll work.

Paano po i-direct sa calcu?

shift solve

More information about text formats

Follow @iMATHalino

MATHalino

$\sqrt{x - \sqrt{1 - x}} = 1 - \sqrt{x}$

$x - \sqrt{1 - x} = \left( 1 - \sqrt{x} \right)^2$

$x - \sqrt{1 - x} = 1 - 2\sqrt{x} + x$

$\sqrt{1 - x} = 2\sqrt{x} - 1$

$1 - x = \left( 2\sqrt{x} - 1 \right)^2$

$1 - x = 4x - 4\sqrt{x} + 1$

$4\sqrt{x} = 5x$

$16x = 25x^2$

$16 = 25x$

$x = \dfrac{16}{25}$

Pwde po ba idirect sa calcu?

Yes...

You can try th symbolab app. I haven't tried this problem on that app but I guess it'll work.

Paano po i-direct sa calcu?

shift solve

## Add new comment