Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 days 22 hours ago
- Determine the least depth…10 months ago
- Solve mo ang h manually…3 days 22 hours ago
- Paano kinuha yung height na…10 months 1 week ago
- It's the unit conversion…10 months 3 weeks ago
- Refer to the figure below…10 months 2 weeks ago
- where do you get the sqrt413 days 22 hours ago
- Thank you so much3 days 7 hours ago
- How did you get the 2.8 mins…3 days 7 hours ago
- How did you get the distance…3 days 7 hours ago


Assume the light to be in
Assume the light to be in absolute position. I don't know if my term is correct but what I mean is this; there is no time-gap for the flash of light to reach your location. In this thinking, the only thing that travels here is the sound. In this case, you will just use the simple formula $s = vt$ where $v$ and $t$ are given. The answer is 3,300 ft.
If you consider the speed of light which is not given but according to Google it is approximately equal to 9.836 × 108 ft/sec then you just subtract the time difference for the light to reach the eyes and for the sound to reach the ears. The equation will then be $\dfrac{s}{v_\text{sound}} - \dfrac{s}{v_\text{light}} = 3$. This solution however, is impractical in many sense for distances here on earth.