Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…3 weeks 2 days ago
- Determine the least depth…10 months 3 weeks ago
- Solve mo ang h manually…3 weeks 2 days ago
- Paano kinuha yung height na…11 months ago
- It's the unit conversion…11 months 1 week ago
- Refer to the figure below…11 months 1 week ago
- where do you get the sqrt413 weeks 2 days ago
- Thank you so much3 weeks 1 day ago
- How did you get the 2.8 mins…3 weeks 1 day ago
- How did you get the distance…3 weeks 1 day ago


Dividing both sides by 6x,
Dividing both sides by 6x, you get
4x/6x+1=9x/6x
Simplifying the fractions you get
2x/3x+1=3x/2x
That can be written as
(2/3)x+1=(3/2)x
Now, if the number you want is (2/3)x=k, then (3/2)x=1/k ,
which means the equation can be written as
k+1=1/k
Multiplying both sides times k,
k2+k=1
Solving that quadratic equation gives you two real solutions for k.
There is something misleading
In reply to Dividing both sides by 6x, by KMST
There is something misleading hahaha.
Do the two real solutions for k BOTH give REAL solutions for $x$ ?
I am not used anymore to
I am not used anymore to calculate this type of equation, the result of relying too much in
SHIFT + SOLVEof Casio. I did not say doingShift + Solveis bad, it is actually highly recommended in my line of work, hehehe. Anyway, allow me to solve this, and I am actually surprised that solving for x is more complex than solving for (2/3)x. Here is my take based on the suggestion of KMST.$4^x + 6^x = 9^x$
$\dfrac{4^x}{6^x} + \dfrac{6^x}{6^x} = \dfrac{9^x}{6^x}$
$\left( \dfrac{4}{6} \right)^x + 1 = \left( \dfrac{9}{6} \right)^x$
$\left( \dfrac{2}{3} \right)^x + 1 = \left( \dfrac{3}{2} \right)^x$
$\left( \dfrac{2}{3} \right)^x + 1 = \dfrac{1}{\left( \dfrac{2}{3} \right)^x}$
$\left( \dfrac{2}{3} \right)^{2x} + \left( \dfrac{2}{3} \right)^x = 1$
$\left( \dfrac{2}{3} \right)^{2x} + \left( \dfrac{2}{3} \right)^x - 1 = 0$
By Quadratic Equation
$\left( \dfrac{2}{3} \right)^x = \dfrac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)}$
$\left( \dfrac{2}{3} \right)^x = \dfrac{-1 \pm \sqrt{5}}{2}$
$\left( \dfrac{2}{3} \right)^x = \dfrac{-1 + \sqrt{5}}{2}$
$\log \left( \dfrac{2}{3} \right)^x = \log \dfrac{-1 + \sqrt{5}}{2}$
$x \log \left( \dfrac{2}{3} \right) = \log (\sqrt{5} - 1) - \log 2$
$x (\log 2 - \log 3) = \log (\sqrt{5} - 1) - \log 2$
$x = \dfrac{\log (\sqrt{5} - 1) - \log 2}{\log 2 - \log 3}$ ← a real number
For
$\left( \dfrac{2}{3} \right)^x = \dfrac{-1 - \sqrt{5}}{2}$
$\log \left( \dfrac{2}{3} \right)^x = \log \dfrac{-1 - \sqrt{5}}{2}$
$x \log \left( \dfrac{2}{3} \right) = \log (-\sqrt{5} - 1) - \log 2$
$x (\log 2 - \log 3) = \log (-\sqrt{5} - 1) - \log 2$
$x = \dfrac{\log (-\sqrt{5} - 1) - \log 2}{\log 2 - \log 3}$ ← underfined
Hence,
$\left( \dfrac{2}{3} \right)^x = \dfrac{\sqrt{5} - 1}{2}$ ← this is my answer.
Please be gentle with me, hehehe. Although I hope I was able to consider everyhting, maybe I miss simething. As I've said, I am no longer used to this type of approach. A decimal number from calculator is more than acceptable for me.