Find the differential equations of the following family of curves.

Differential Equations
Find the differential equations of the following family of curves.

1. Parabolas with axis parallel to the y – axis with distance vertex to focus fixed as a.
2. Parabolas with axis parallel to the x – axis with distance vertex to focus fixed as a.
3. All ellipses with center at the origin and axes on the coordinate axes.
4. Family of cardioids.
5. Family of 3 – leaf roses.

In reply to by Bingo

It is better to express your answer in terms of y' rather than x'. Although x' will do and simpler.
$(y − k)^2 = \pm 4a(x − h)$

$2(y − k)y' = \pm 4a$

$y' = \dfrac{\pm 2a}{y - k}$

Note: $y - k = \dfrac{y'}{\pm 2a}$

$y'' = \dfrac{\mp 2a \, y'}{(y - k)^2}$

$y'' = \dfrac{\mp 2a \, y'}{\left( \dfrac{y'}{\pm 2a} \right)^2}$

$y'' = \dfrac{\mp 8a}{y'}$

$y'' \, y' = \pm 8a$

In reply to by ChaCha Ingal Cortez

They are different. I made a mistake in $y - k$ of the above solution.
$(y − k)^2 = \pm 4a(x − h)$

$2(y - k) \, y' = \pm 4a$

$y' = \dfrac{\pm 2a}{y - k}$

$y - k = \dfrac{\pm 2a}{y'}$

$y'' = \dfrac{\mp 2a \, y'}{(y - k)^2}$

$y'' = \dfrac{\mp 2a \, y'}{\left( \dfrac{\pm 2a}{y'} \right)^2}$

$y'' = \dfrac{\mp 2a \, y'}{\dfrac{4a^2}{(y')^2}}$

$y'' = \dfrac{\mp (y')^3}{2a}$

$2a \, y'' = \mp (y')^3$

$\pm (y')^3 + 2a \, y'' = 0$

Sir do you know how to eliminate arbitrary constant here in this equation?
(y-33)²=4a(x-h)?