Gas is escaping from a spherical balloon at a constant rate of 2 fˆ3/min. How fast is the outer surface area shrinking?

Problem
Gas is escaping from a spherical balloon at a constant rate of 2 ft3/min. How fast, in ft2/min, is the outer surface area of the balloon shrinking when the radius is 12 ft?

A.   1/2 C.   1/3
B.   1/5 D.   1/4

 

Rate of Change of Volume of Sand in Conical Shape

Problem
A conveyor is dispersing sands which forms into a conical pile whose height is approximately 4/3 of its base radius. Determine how fast the volume of the conical sand is changing when the radius of the base is 3 feet, if the rate of change of the radius is 3 inches per minute.

A.   2π ft/min C.   3π ft/min
B.   4π ft/min D.   5π ft/min

 

Velocity of Separation: How fast is the distance between two cars changing?

Problem
A Toyota Land Cruiser drives east from point A at 30 kph. Another car, Ford Expedition, starting from B at the same time, drives S30°W toward A at 60 kph. B is 30 km from A. How fast in kph is the distance between two cars changing after 30 minutes? Hint: Use the Cosine Law.

A.   70 kph C.   55 kph
B.   80 kph D.   60 kph

 

52-53 Two cars traveling from the same point but going to different directions

Problem 52
A car drives south at 20 mi/hr. Another car, starting from the same point at the same time and traveling 40 mi/hr, goes east for 30 minutes then turns north. Find the rate of rotation of the line joining the cars (a) 1 hour after the start; (b) at the time the second car makes its turn.