steel

Solution to Problem 271 Thermal Stress

Problem 271
A rigid bar of negligible weight is supported as shown in Fig. P-271. If W = 80 kN, compute the temperature change that will cause the stress in the steel rod to be 55 MPa. Assume the coefficients of linear expansion are 11.7 µm/(m·°C) for steel and 18.9 µm/(m·°C) for bronze.
 

Solution to Problem 270 Thermal Stress

Problem 270
A bronze sleeve is slipped over a steel bolt and held in place by a nut that is turned to produce an initial stress of 2000 psi in the bronze. For the steel bolt, A = 0.75 in2, E = 29 × 106 psi, and α = 6.5 × 10-6 in/(in·°F). For the bronze sleeve, A = 1.5 in2, E = 12 × 106 psi and α = 10.5 × 10-6 in/(in·°F). After a temperature rise of 100°F, find the final stress in each material.
 

Solution to Problem 268 Thermal Stress

Problem 268
The rigid bar ABC in Fig. P-268 is pinned at B and attached to the two vertical rods. Initially, the bar is horizontal and the vertical rods are stress-free. Determine the stress in the aluminum rod if the temperature of the steel rod is decreased by 40°C. Neglect the weight of bar ABC.
 

268 Steel and aluminum rods

 

Solution to Problem 267 Thermal Stress

Problem 267
At a temperature of 80°C, a steel tire 12 mm thick and 90 mm wide that is to be shrunk onto a locomotive driving wheel 2 m in diameter just fits over the wheel, which is at a temperature of 25°C. Determine the contact pressure between the tire and wheel after the assembly cools to 25°C. Neglect the deformation of the wheel caused by the pressure of the tire. Assume α = 11.7 μm/(m·°C) and E = 200 GPa.
 

Solution to Problem 264 Thermal Stress

Problem 264
A steel rod 3 feet long with a cross-sectional area of 0.25 in.2 is stretched between two fixed points. The tensile force is 1200 lb at 40°F. Using E = 29 × 106 psi and α = 6.5 × 10-6 in./(in.·°F), calculate (a) the temperature at which the stress in the bar will be 10 ksi; and (b) the temperature at which the stress will be zero.
 

Solution to Problem 263 Thermal Stress

Problem 263
Steel railroad reels 10 m long are laid with a clearance of 3 mm at a temperature of 15°C. At what temperature will the rails just touch? What stress would be induced in the rails at that temperature if there were no initial clearance? Assume α = 11.7 µm/(m·°C) and E = 200 GPa.
 

Solution to Problem 262 Thermal Stress

Problem 262
A steel rod is stretched between two rigid walls and carries a tensile load of 5000 N at 20°C. If the allowable stress is not to exceed 130 MPa at -20°C, what is the minimum diameter of the rod? Assume α = 11.7 µm/(m·°C) and E = 200 GPa.
 

Solution to Problem 261 Thermal Stress

Problem 261
A steel rod with a cross-sectional area of 0.25 in2 is stretched between two fixed points. The tensile load at 70°F is 1200 lb. What will be the stress at 0°F? At what temperature will the stress be zero? Assume α = 6.5 × 10-6 in/(in·°F) and E = 29 × 106 psi.
 

Solution to Problem 257 Statically Indeterminate

Problem 257
Three bars AB, AC, and AD are pinned together as shown in Fig. P-257. Initially, the assembly is stress free. Horizontal movement of the joint at A is prevented by a short horizontal strut AE. Calculate the stress in each bar and the force in the strut AE when the assembly is used to support the load W = 10 kips. For each steel bar, A = 0.3 in.2 and E = 29 × 106 psi. For the aluminum bar, A = 0.6 in.2 and E = 10 × 106 psi.
 

Figure 257

 

Solution to Problem 256 Statically Indeterminate

Problem 256
Three rods, each of area 250 mm2, jointly support a 7.5 kN load, as shown in Fig. P-256. Assuming that there was no slack or stress in the rods before the load was applied, find the stress in each rod. Use Est = 200 GPa and Ebr = 83 GPa.
 

Figure P-256

 

Pages

Subscribe to RSS - steel