# flexural stress

## Solution to Problem 553 | Unsymmetrical Beams

**Problem 553**

Determine the maximum tensile and compressive bending stresses developed in the beam as shown in Fig. P-553.

- Read more about Solution to Problem 553 | Unsymmetrical Beams
- Log in or register to post comments
- 10904 reads

## Solution to Problem 552 | Unsymmetrical Beams

**Problem 552**

A cantilever beam carries the force and couple shown in Fig. P-552. Determine the maximum tensile and compressive bending stresses developed in the beam.

- Read more about Solution to Problem 552 | Unsymmetrical Beams
- Log in or register to post comments
- 13761 reads

## Solution to Problem 548 | Unsymmetrical Beams

**Problem 548**

The inverted T section of a 4-m simply supported beam has the properties shown in Fig. P-548. The beam carries a uniformly distributed load of intensity w_{o} over its entire length. Determine *w _{o}* if

*f*≤ 40 MPa and

_{bt}*f*≤ 80 MPa.

_{bc}- Read more about Solution to Problem 548 | Unsymmetrical Beams
- Log in or register to post comments
- 18199 reads

## Solution to Problem 541 | Floor Framing

**Problem 541**

The 18-ft long floor beams in a building are simply supported at their ends and carry a floor load of 0.6 lb/in^{2}. If the beams have W10 × 30 sections, determine the center-line spacing using an allowable flexural stress of 18 ksi.

- Read more about Solution to Problem 541 | Floor Framing
- Log in or register to post comments
- 5341 reads

## Solution to Problem 536 | Economic Sections

**Problem 536**

A simply supported beam 10 m long carries a uniformly distributed load of 20 kN/m over its entire length and a concentrated load of 40 kN at midspan. If the allowable stress is 120 MPa, determine the lightest W shape beam that can be used.

- Read more about Solution to Problem 536 | Economic Sections
- Log in or register to post comments
- 20967 reads

## Solution to Problem 535 | Economic Sections

**Problem 535**

A simply supported beam 24 ft long carries a uniformly distributed load of 2000 lb/ft over its entire length and a concentrated load of 12 kips at 8 ft from left end. If the allowable stress is 18 ksi, select the lightest suitable W shape. What is the actual maximum stress in the selected beam?

- Read more about Solution to Problem 535 | Economic Sections
- Log in or register to post comments
- 5705 reads

## Solution to Problem 534 | Economic Sections

- Read more about Solution to Problem 534 | Economic Sections
- Log in or register to post comments
- 4389 reads

## Solution to Problem 533 | Economic Sections

**Problem 533**

A beam simply supported on a 36-ft span carries a uniformly distributed load of 2000 lb/ft over the middle 18 ft. Using an allowable stress of 20 ksi, determine the lightest suitable W shape beam. What is the actual maximum stress in the selected beam?

- Read more about Solution to Problem 533 | Economic Sections
- Log in or register to post comments
- 6190 reads

## Solution to Problem 532 | Economic Sections

**Problem 532**

A beam simply supported at the ends of a 25-ft span carries a uniformly distributed load of 1000 lb/ft over its entire length. Select the lightest S section that can be used if the allowable stress is 20 ksi. What is the actual maximum stress in the beam selected?

- Read more about Solution to Problem 532 | Economic Sections
- Log in or register to post comments
- 7121 reads

## Solution to Problem 531 | Economic Sections

**Problem 531**

A 15-ft beam simply supported at the ends carries a concentrated load of 9000 lb at midspan. Select the lightest S section that can be employed using an allowable stress of 18 ksi. What is the actual maximum stress in the beam selected?

- Read more about Solution to Problem 531 | Economic Sections
- Log in or register to post comments
- 7103 reads