Skip to main content
HomeMATHalinoEngineering Math Review
  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. elastic curve

elastic curve

Solution to Problem 632 | Moment Diagrams by Parts

Problem 632
For the beam loaded as shown in Fig. P-632, compute the value of (AreaAB) barred(X)A. From this result, is the tangent drawn to the elastic curve at B directed up or down to the right? (Hint: Refer to the deviation equations and rules of sign.)
 

Overhang beam with point and rectangular loads

 

  • Read more about Solution to Problem 632 | Moment Diagrams by Parts
  • Log in to post comments

Solution to Problem 630 | Moment Diagrams by Parts

Problem 630
For the beam loaded as shown in Fig. P-630, compute the value of (AreaAB)barred(X)A . From the result determine whether the tangent drawn to the elastic curve at B slopes up or down to the right. (Hint: Refer to the deviation equations and rules of sign.)
 

Overhang beam with point load at free end

 

  • Read more about Solution to Problem 630 | Moment Diagrams by Parts
  • Log in to post comments

Solution to Problem 621 | Double Integration Method

Problem 621
Determine the value of EIδ midway between the supports for the beam shown in Fig. P-621. Check your result by letting a = 0 and comparing with Prob. 606. (Apply the hint given in Prob. 620.)
 

621-given-figure.jpg

 

  • Read more about Solution to Problem 621 | Double Integration Method
  • Log in to post comments

Solution to Problem 620 | Double Integration Method

Problem 620
Find the midspan deflection δ for the beam shown in Fig. P-620, carrying two triangularly distributed loads. (Hint: For convenience, select the origin of the axes at the midspan position of the elastic curve.)
 

Beam loaded with symmetrical triangular load

 

  • Read more about Solution to Problem 620 | Double Integration Method
  • Log in to post comments

Solution to Problem 619 | Double Integration Method

Problem 619
Determine the value of EIy midway between the supports for the beam loaded as shown in Fig. P-619.
 

Overhang beam with moment and uniform loads

 

  • Read more about Solution to Problem 619 | Double Integration Method
  • Log in to post comments

Solution to Problem 618 | Double Integration Method

Problem 618
A simply supported beam carries a couple M applied as shown in Fig. P-618. Determine the equation of the elastic curve and the deflection at the point of application of the couple. Then letting a = L and a = 0, compare your solution of the elastic curve with cases 11 and 12 in the Summary of Beam Loadings.
 

Simply supported beam carrying a couple

 

  • Read more about Solution to Problem 618 | Double Integration Method
  • Log in to post comments

Solution to Problem 614 | Double Integration Method

Problem 614
For the beam loaded as shown in Fig. P-614, calculate the slope of the elastic curve over the right support.
 

Overhang beam with point at the end of overhang

 

  • Read more about Solution to Problem 614 | Double Integration Method
  • Log in to post comments

Solution to Problem 608 | Double Integration Method

Problem 608
Find the equation of the elastic curve for the cantilever beam shown in Fig. P-608; it carries a load that varies from zero at the wall to wo at the free end. Take the origin at the wall.
 

Cantilever Beam Loaded with Triangular Load

 

  • Read more about Solution to Problem 608 | Double Integration Method
  • Log in to post comments

Solution to Problem 607 | Double Integration Method

Problem 607
Determine the maximum value of EIy for the cantilever beam loaded as shown in Fig. P-607. Take the origin at the wall.
 

Cantilever Beam with Point Load

 

  • Read more about Solution to Problem 607 | Double Integration Method
  • 2 comments
  • Log in to post comments

Solution to Problem 606 | Double Integration Method

Problem 606
Determine the maximum deflection δ in a simply supported beam of length L carrying a uniformly distributed load of intensity wo applied over its entire length.
 

  • Read more about Solution to Problem 606 | Double Integration Method
  • Log in to post comments

Pagination

  • Previous page ‹‹
  • (Page 3)
  • Next page ››
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved