Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month ago
- Sir what if we want to find…1 month ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 2 weeks ago
- need answer3 months 2 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
To get the radius of the
To get the radius of the circle found on this crossing cylinders, recall that:
where $r$ is the radius of the circle found on the base of the cylinders and $V$ is the volume of the common portion of crossing cylinders shown above.
With that in mind, we have:
$$V = \frac{16}{3}r^3$$ $$144 \space cm^3 = \frac{16}{3}r^3$$ $$r = 3 \space cm$$
Therefore, the radius of the circle found on the bases of crossing cylinders is $\color{green}{3 \space cm}$.
Alternate solutions are encouraged....