Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…1 week 3 days ago
- Determine the least depth…10 months 1 week ago
- Solve mo ang h manually…1 week 3 days ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…11 months ago
- Refer to the figure below…10 months 3 weeks ago
- where do you get the sqrt411 week 3 days ago
- Thank you so much1 week 3 days ago
- How did you get the 2.8 mins…1 week 3 days ago
- How did you get the distance…1 week 3 days ago


To get the volume of the pile
To get the volume of the pile of ore, which looks like this:
We need to know the formula for the volume of the figure above. The formula applicable would be:
$$V = Bh$$
where $V$ is volume of the figure, $B$ is the area of base and $h$ is the height of the figure.
We notice that we don't know the area of the end bases of this pile of ore. We need to get it by using the formula to get the area of the triangle.
Getting the other sides of the pile of ore:
$$\cos 45^o = \frac{x}{60}$$ $$x = 30\sqrt{2} \space ft$$
Now getting the area of the ends of this pile of ore:
$$Area = \frac{1}{2}bh$$ $$Area = \frac{1}{2}(30\sqrt{2} \space feet)(30\sqrt{2} \space feet)$$ $$Area = 900 \space ft^2$$
Now we can get the volume of this pile of ore:
$$V= Bh$$ $$V = (900 \space ft^2)(500 \space ft)$$ $$V = 450000 \space ft^3$$
Therefore the volume of your pile of ore is $\color{green}{450000 \space ft^3}$
Alternate solutions are encouraged...heheheheh