## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- Use integration by parts for…2 weeks ago
- need answer2 weeks ago
- Yes you are absolutely right…2 weeks 3 days ago
- I think what is ask is the…2 weeks 3 days ago
- $\cos \theta = \dfrac{2}{…2 weeks 4 days ago
- Why did you use (1/SQ root 5…2 weeks 4 days ago
- How did you get the 300 000pi2 weeks 4 days ago
- It is not necessary to…2 weeks 5 days ago
- Draw a horizontal time line…3 weeks 1 day ago
- Mali po ang equation mo…1 month ago

## Our moderator lock this post

Our moderator lock this post for lack of data. The information actually is complete, we think the given 1200 cm

^{3}is supposed to be a total surface area, the correct unit should be cm^{2}.We revised the problem and open it for commenting.

## Maximum possible volume,

Maximum possible volume, given1200cm^2 of material, square base and open top

Volume = x

^{2}ySurface Area = 1200 = 4x

^{2}+ xy =⇒ y =(1200 − 4x^{2})/xv = x

^{2}yv(x) = x

^{2}(1200 − 4x^{2})/xv(x) = x(1200 − 4x

^{2})v'(x) = (1200 − 4x

^{2}) + x(−8x)0 = 1200 − 12x

^{2}0 = 100 − x

^{2}x = ±10

v"(x)=-24x

v"(10)0

There is a maximum when x = 10 and y = 12

The largest possible volume of the box is 1200 cm

^{3}## Hello po sir, I think your

In reply to Maximum possible volume, by esmilitar

Hello po sir, I think your total surface area was interchanged. Since the base is square and open top, if the dimensions of the square base is

xbyxand the depth isythen the total surface area should be:x^{2}+ 4xy= 1200This problem is one of the common variable relationships of maxima and minima. This one needs no differentiation if we can familiarized the result. The result of this is always

x= 2y.Of course, doing the differentiation cannot be discounted. We really need it specially if the problem is twisted in another way so that the

x= 2yis no longer applicable.This problem is actually common to engineering board exams, it is encouraged to memorized the variable relationship rather than do the differentiation process to save considerable amount of time.

My answer to this problem is 4,000 cc.

## thank you sir i should

In reply to Hello po sir, I think your by Jhun Vert

thank you sir i should familirized this one..