## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- 400000=120[14π(D2−10000)]

(…1 week 5 days ago - Use integration by parts for…1 month 1 week ago
- need answer1 month 1 week ago
- Yes you are absolutely right…1 month 1 week ago
- I think what is ask is the…1 month 1 week ago
- $\cos \theta = \dfrac{2}{…1 month 2 weeks ago
- Why did you use (1/SQ root 5…1 month 2 weeks ago
- How did you get the 300 000pi1 month 2 weeks ago
- It is not necessary to…1 month 2 weeks ago
- Draw a horizontal time line…1 month 2 weeks ago

## (No subject)

## Hi Paul, I understand you

Hi Paul, I understand you need to integrate the equation but you did not present to us the variable of integration. Assuming your variable is

xthen other symbol likep,A,_{o}L, andEare constants. Am I right? If so, is this your equation?$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$

Assuming my interpretations are correct, here is how to integrate it:

$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$

$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{1 - x}$

$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (1 - x) + C$

## Hi Romel, you are correct

In reply to Hi Paul, I understand you by Jhun Vert

Hi Romel, you are correct variable is x. I couldn't paste the equation in. The e-1 should be multiplied by the p/A0 equation, but I think I understand it. I need to run some software now and compare the hand calcs.

## The other way that I looked

The other way that I looked at your equation is this:

$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left(1 - \dfrac{x}{2L} \right)} \, dx$

$\displaystyle \epsilon = \dfrac{p}{EA_o}\int \dfrac{dx}{\dfrac{2L - x}{2L}}$

$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{2L - x}$

$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (2L - x) + C$

## https://www.flickr.com/photos

In reply to The other way that I looked by Jhun Vert

https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/

If you copy and paste the link Romel you will see my original equation I am trying to integrate to x

## (No subject)

## https://www.flickr.com/photos

https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/

## If you copy and paste the

If you copy and paste the flicker link you will see the equation I am trying to solve Romel