Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 month ago
- Sir what if we want to find…1 month ago
- Hello po! Question lang po…1 month 2 weeks ago
- 400000=120[14π(D2−10000)]
(…2 months 3 weeks ago - Use integration by parts for…3 months 2 weeks ago
- need answer3 months 2 weeks ago
- Yes you are absolutely right…3 months 3 weeks ago
- I think what is ask is the…3 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…3 months 3 weeks ago
- Why did you use (1/SQ root 5…3 months 3 weeks ago
(No subject)
Hi Paul, I understand you
Hi Paul, I understand you need to integrate the equation but you did not present to us the variable of integration. Assuming your variable is x then other symbol like p, Ao, L, and E are constants. Am I right? If so, is this your equation?
$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$
Assuming my interpretations are correct, here is how to integrate it:
$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left( \dfrac{1 - x}{2L} \right)} \, dx$
$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{1 - x}$
$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (1 - x) + C$
Hi Romel, you are correct
In reply to Hi Paul, I understand you by Jhun Vert
Hi Romel, you are correct variable is x. I couldn't paste the equation in. The e-1 should be multiplied by the p/A0 equation, but I think I understand it. I need to run some software now and compare the hand calcs.
The other way that I looked
The other way that I looked at your equation is this:
$\displaystyle \epsilon = \int \dfrac{pE^{-1}}{A_o \left(1 - \dfrac{x}{2L} \right)} \, dx$
$\displaystyle \epsilon = \dfrac{p}{EA_o}\int \dfrac{dx}{\dfrac{2L - x}{2L}}$
$\displaystyle \epsilon = \dfrac{2pL}{EA_o}\int \dfrac{dx}{2L - x}$
$\displaystyle \epsilon = -\dfrac{2pL}{EA_o}\ln (2L - x) + C$
https://www.flickr.com/photos
In reply to The other way that I looked by Jhun Vert
https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/
If you copy and paste the link Romel you will see my original equation I am trying to integrate to x
(No subject)
https://www.flickr.com/photos
https://www.flickr.com/photos/baldypaul/33086782230/in/datetaken/
If you copy and paste the
If you copy and paste the flicker link you will see the equation I am trying to solve Romel