## Active forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
- Application of Differential Equation: Newton's Law of Cooling

## New forum topics

- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
- Required diameter of solid shaft

## Recent comments

- Hello po! Question lang po…1 week 3 days ago
- 400000=120[14π(D2−10000)]

(…1 month 2 weeks ago - Use integration by parts for…2 months 1 week ago
- need answer2 months 1 week ago
- Yes you are absolutely right…2 months 2 weeks ago
- I think what is ask is the…2 months 2 weeks ago
- $\cos \theta = \dfrac{2}{…2 months 2 weeks ago
- Why did you use (1/SQ root 5…2 months 2 weeks ago
- How did you get the 300 000pi2 months 2 weeks ago
- It is not necessary to…2 months 2 weeks ago

## Re: Help :((

Following exponential change

$x = x_o e^{-kt}$

After 38 hours, 50% is dissipated, hence 50% retained

$0.5x_o = x_o e^{-38k}$

$0.5 = e^{-38k}$

$e^{-k} = 0.5^{1/38}$

Thus,

$x = x_o 0.5^{t/38}$

90% dissipated means 10% retained, hence, x = 0.10x

_{o}$0.10x_o = x_o 0.5^{t/38}$

$0.10 = 0.5^{t/38}$

$t = 126.23 ~ \text{hrs}$

## Re: Help :(( Exponential Decay

You can also use exponential STAT in your calculator:

CASIO fx-991ES PLUS: [MODE] [3:Stat] [5:e^X]

X(time)Y(% retained)[AC]

For 10% retained:

X (time) = 0.1x-caret = 126.23 hours

x-caret can be found at [Shift] [1:Stat] [5:Reg] [4:x-caret]