Differential Equations - Elementary Application

Orthogonal Trajectories
y^3 - 3 = ln |Cx|

Please check if the answer I solved is correct.
My answer: y(3x^2 + c)=2

Infinitesimal's picture

Rewriting the equation,

\begin{eqnarray*}
y^3 - 3 &=& \ln C + \ln |x|\\
y^3 - 3 &=& C + \ln |x|\\
y^3 - \ln |x| &=& C\\
3y^2 y' - \dfrac{1}{x} &=& 0\\
y' &=& \dfrac{1}{3xy^2}\\
y'_o &=& -3xy^2\\
\dfrac{dy}{y^2} &=& -3x dx\\
\dfrac{-1}{y} &=& \dfrac{-3x^2}{2} + C\\
\dfrac{1}{y} &=& \dfrac{3x^2}{2} + C\\
2 &=& 3xy^2 + Cy
\end{eqnarray*}

You are correct with $\boxed{y(3x^2+C)=2}$

Add new comment

Deafult Input

  • Allowed HTML tags: <img> <em> <strong> <cite> <code> <ul> <ol> <li> <dl> <dt> <dd> <sub> <sup> <blockquote> <ins> <del> <div>
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
  • Mathematics inside the configured delimiters is rendered by MathJax. The default math delimiters are $$...$$ and \[...\] for displayed mathematics, and $...$ and \(...\) for in-line mathematics.

Plain text

  • No HTML tags allowed.
  • Lines and paragraphs break automatically.