Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.1 week ago
- Sir what if we want to find…1 week ago
- Hello po! Question lang po…3 weeks 4 days ago
- 400000=120[14π(D2−10000)]
(…1 month 4 weeks ago - Use integration by parts for…2 months 3 weeks ago
- need answer2 months 3 weeks ago
- Yes you are absolutely right…2 months 4 weeks ago
- I think what is ask is the…2 months 4 weeks ago
- $\cos \theta = \dfrac{2}{…3 months ago
- Why did you use (1/SQ root 5…3 months ago
Coefficient Linear in Two
Coefficient Linear in Two Variables
$(r- 3s - 7) \, dr = (2r - 4s - 10) \, ds$
2r - 4s - 10 = 0 ← (2)
From (1) and (2)
r = 1 and
s = -2
Let
r = x + 1 → dr = dx
s = y - 2 → ds = dy
$\Big[ (x + 1) - 3(y - 2) - 7 \Big] \, dx = \Big[ 2(x + 1) - 4(y - 2) - 10 \Big] \, dy$
$(x + 1 - 3y + 6 - 7) \, dx = (2x + 2 - 4y + 8 - 10) \, dy$
$(x - 3y) \, dx = (2x - 4y) \, dy$ ← homogeneous
y = vx
dy = v dx + x dv
$(x - 3vx) \, dx = (2x - 4vx)(v\,dx + x\,dv)$
$(x - 3vx) \, dx = v(2x - 4vx)\,dx + x(2x - 4vx)\,dv$
$\Big[ (x - 3vx) - v(2x - 4vx) \Big]\,dx = x(2x - 4vx)\,dv$
$(x - 3vx - 2vx + 4v^2x)\,dx = x(2x - 4vx)\,dv$
$(x - 5vx + 4v^2x)\,dx = x(2x - 4vx)\,dv$
$x(1 - 5v + 4v^2)\,dx = x^2(2 - 4v)\,dv$
$\dfrac{x\,dx}{x^2} = \dfrac{(2 - 4v)\,dv}{1 - 5v + 4v^2}$
$\dfrac{dx}{x} = \dfrac{(2 - 4v)\,dv}{(v - 1)(4v - 1)}$
$\dfrac{2 - 4v}{(v - 1)(4v - 1)} = \dfrac{A}{v - 1} + \dfrac{B}{4v - 1}$
$2 - 4v = A(4v - 1) + B(v - 1)$
When v = 1, A = -2/3
When v = 1/4, B = -4/3
$\dfrac{dx}{x} = \left( \dfrac{-2/3}{v - 1} + \dfrac{-4/3}{4v - 1} \right) \, dv$
$\displaystyle \int \dfrac{dx}{x} = -\dfrac{2}{3} \int \dfrac{dv}{v - 1} - \dfrac{1}{3} \int \dfrac{4\,dv}{4v - 1}$
$\ln x + c = -\frac{2}{3}\ln (v - 1) - \frac{1}{3}\ln (4v - 1)$
$\ln x + c = -\frac{1}{3} \Big[ 2\ln (v - 1) + \ln (4v - 1) \Big]$
$\ln x + c = -\frac{1}{3} \Big[ \ln (v - 1)^2 + \ln (4v - 1) \Big]$
$\ln x + c = -\frac{1}{3} \ln \Big[ (v - 1)^2(4v - 1) \Big] $
$\ln x + c = -\frac{1}{3} \ln \left[ \left( \dfrac{y}{x} - 1 \right)^2 \left( \dfrac{4y}{x} - 1 \right) \right]$
$\ln x + c = -\frac{1}{3} \ln \left[ \left( \dfrac{y - 1}{x}\right)^2 \left( \dfrac{4y - 1}{x}\right) \right]$
$\ln x + c = -\frac{1}{3} \ln \dfrac{(y - 1)^2(4y - 1)}{x^3}$
$\ln (r - 1) + c = -\frac{1}{3} \ln \dfrac{[ (s + 2) - 1)^2 [ 4(s + 2) - 1 ]}{(r - 1)^3}$
$\ln (r - 1) + c = -\frac{1}{3} \ln \dfrac{(s + 1)^2(4s + 7)}{(r - 1)^3}$
Note: double check everything