Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…1 week 2 days ago
- Determine the least depth…10 months 1 week ago
- Solve mo ang h manually…1 week 2 days ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 4 weeks ago
- Refer to the figure below…10 months 3 weeks ago
- where do you get the sqrt411 week 2 days ago
- Thank you so much1 week 2 days ago
- How did you get the 2.8 mins…1 week 2 days ago
- How did you get the distance…1 week 2 days ago


$(2r)^2 + h^2 = (2R)^2$
$(2r)^2 + h^2 = (2R)^2$
$4r^2 + h^2 = 4R^2$
$h = \sqrt{4R^2 - 4r^2}$
$S = 2\pi rh$
$S = 2\pi r\sqrt{4R^2 - 4r^2}$
$\dfrac{dS}{dr} = 2\pi \left[ r \cdot \dfrac{-8r}{2\sqrt{4R^2 - 4r^2}} + \sqrt{4R^2 - 4r^2} \right] = 0$
$\sqrt{4R^2 - 4r^2} = \dfrac{8r^2}{2\sqrt{4R^2 - 4r^2}}$
$4R^2 - 4r^2 = 4r^2$
$R^2 = 2r^2$
$r^2 = \frac{1}{2}R^2$
$r = \frac{1}{\sqrt{2}}R$
$h = \sqrt{4R^2 - 4r^2}$
$h = \sqrt{4R^2 - 4(\frac{1}{2}R^2)}$
$h = \sqrt{2R^2}$
$h = \sqrt{2}R$
$\text{Required ratio} = \dfrac{h}{r}$
$\text{Required ratio} = \dfrac{\sqrt{2}R}{\frac{1}{\sqrt{2}}R}$
$\text{Required ratio} = 2$ answer