Please Help...

Find the center, vertices, foci of the ellipse given the equation 16x² +25y² -160x - 200y + 400 = 0.

Please help...

- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates
- Minima Maxima: y=ax³+bx²+cx+d
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: 9a³y=x(4a-x)³
- Minima maxima: a²y = x⁴
- how to find the distance when calculating moment of force
- strength of materials
- Analytic Geometry Problem Set [Locked: Multiple Questions]
- Equation of circle tangent to two lines and passing through a point
- Product of Areas of Three Dissimilar Right Triangles
- Perimeter of Right Triangle by Tangents
- Differential equations
- Laplace
- Families of Curves: family of circles with center on the line y= -x and passing through the origin
- Family of Plane Curves
- Differential equation
- Differential equation

Home • Forums • Blogs • Glossary • Recent

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

About • Contact us • Disclaimer • Privacy Policy • Hosted by WebFaction • Powered by Drupal

Forum posts (unless otherwise specified) licensed under a Creative Commons Licence.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

All trademarks and copyrights on this page are owned by their respective owners. Forum posts are owned by the individual posters.

This is not really calculus. The question might have been answered more promptly, if asked in the algebra section. You also had a fair chance of an answer in the algebra . com website.

16x² +25y² -160x - 200y + 400 = 0

16x² -160x+25y² - 200y = - 400

16(x² -10x)+25(y² - 8y) = - 400

16(x² -10x)+16(25) +25(y² - 8y) +25(16)= - 400+16(25)+25(16)

16(x² -10x+25)+25(y² - 8y+16) = 400

16(x-5)

^{2}+25(y-4)^{2}= 40016(x-5)

^{2}/400+25(y-4)^{2}/400 = 1(x-5)

^{2}/25+(y-4)^{2}/16 = 1(x-5)

^{2}/5^{2}+(y-4)^{2}/4^{2}= 1You can see that the last equation above represents an ellipse

centered at (5,4),

with horizontal major axis,

a semi-major axis a=5 ,

and a semi-minor axis b=4 .

That means that the vertices, at the ends of the major axis, are

(5-5,4) =(0,4) and (5+5,4) = (10,4) .

The co-vertices, at the end of the minor axis, are

(5,4-4) = (5,0) and (5,4+4) = (5,8) .

The foci are on the major axis, between the center and the vertices,

at (5-c,4) and (5+c,4) .

All that is left to do is find the focal distance, c .

For that you may remember that in an ellipse a

^{2}= b^{2}+ c^{2},or you may remember the definition of ellipse, and deduce the formula yourself.

In this case, substituting the values found for a and b,

5

^{2}= 4^{2}+ c^{2}, or25 = 16 + c

^{2}---> c^{2}= 25-16 = 9 ---> c = 3 .Then, the foci are at

(5-3,4) = (2,4) and (5+3,4) = (8,4) .

Using Calculus for Vertices

$16x^2 + 25y^2 - 160x - 200y + 400 = 0$

For Upper and Lower Vertices

At the highest and lowest points, y' = 0

$32x - 160 = 0$

$x = 5$

$16(5^2) + 25y^2 - 160(5) - 200y + 400 = 0$

$25y^2 - 200y = 0$

$y = 8 ~ \text{and} ~ 0$

upper vertex = (5, 8)

lower vertex = (5, 0)

For Left and Right Vertices

At the extreme left and extreme right points, x' = 0

$50y - 200 = 0$

$y = 4$

$16x^2 + 25(4^2) - 160x - 200(4) + 400 = 0$

$16x^2 - 160x = 0$

$x = 10 ~ \text{and} ~ 0$

right vertex = (10, 4)

left vertex = (0, 4)

Below is the plot to locate the center and other points:

Sir, pwede din bang gamitin ang y' = infinity para kunin ang left and right vertices? In this way kasi, isa na lang ang kukunin, yung y' na lang, hindi na kailangan ang x'.