Can you help with the laplace transform of derivative of sin (at)

4 posts / 0 new
Last post
lizzie
Can you help with the laplace transform of derivative of sin (at)

Can you help with the laplace transform of derivative of sin (at)

fitzmerl duron
fitzmerl duron's picture

I think of two versions of that problem.

1.) I got to get the derivative of $\sin(at)$ first before getting the Laplace transform of the derivative of $\sin(at).$

2.) This form: $\mathcal L\{ \frac{d}{dt}(sin (at)) \}$

I think I go do the #1.......because there is another operation that deas with Laplace transforms of derivatives.

fitzmerl duron
fitzmerl duron's picture

To get the Laplace transform of derivative of $\sin (at)$, get first the derivative of $\sin (at)$. So we let $u = at$ and $du = a.$ Then recall that $\frac{d}{dx}(\sin u) = \cos(u) du$. So....

$$\frac{d}{dx}(\sin u ) = \cos (u) du$$ $$\frac{d}{dx}(\sin (at) ) = \cos (at) (a)$$ $$\frac{d}{dx}(\sin (at) ) = a \cos (at) $$

We will get the Laplace transform of $a \cos (at)$.

Recall that the Laplace transform of $\cos (\omega_o t)$ is $\frac{s}{s^2 + \omega_o ^2}$. Then the Laplace transform of $a \cos (at)$ would be:

$$\mathcal L \{ \cos (\omega_o t) \} = \frac{s}{s^2 + \omega_o ^2}$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + (a)^2} \right)$$ $$\mathcal L \{ a \cos (at) \} = a \left( \frac{s}{s^2 + a^2} \right)$$

We conclude that Laplace transform of $a \cos (at)$ is $ \frac{a s}{s^2 + a^2} $.

Hope it helps:-)

fitzmerl duron
fitzmerl duron's picture

hi Lee:-)

 
 
Subscribe to MATHalino on