Active forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Integration of 4x^2/csc^3x√sinxcosx dx
- application of minima and maxima
- Sight Distance of Vertical Parabolic Curve
New forum topics
- Inverse Trigo
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Law of cosines
- Can you help me po to solve this?
- Eliminate the Arbitrary Constants
Recent comments
- Yes.2 months ago
- Sir what if we want to find…2 months ago
- Hello po! Question lang po…2 months 2 weeks ago
- 400000=120[14π(D2−10000)]
(…3 months 3 weeks ago - Use integration by parts for…4 months 2 weeks ago
- need answer4 months 2 weeks ago
- Yes you are absolutely right…4 months 3 weeks ago
- I think what is ask is the…4 months 3 weeks ago
- $\cos \theta = \dfrac{2}{…4 months 3 weeks ago
- Why did you use (1/SQ root 5…4 months 3 weeks ago
Here it is:
Here it is:
I let $u = x^3$ and $v = 2y^2.$ Then doing this: $$(u)^6 = (x^3)^6 \space and \space \space \left(\frac{v}{2} \right)^6 = (y^2)^6$$
we get $u^6 = x^{18}$ and $\left(\frac{v^6}{64} \right) = y^{12}$
We now conclude that the expression $(u + v)^n$ has a term $(u^6)\left(\frac{v^6}{64} \right)$ along its expansion when $u = x^3$ and $v = 2y^2$ We need to find its equivalent term of $(u^6)\left(\frac{v^6}{64} \right)$ when we go back to dealing with $(x^3 + 2y^2)^n.$
Everybody knows that in the binomial expansion of $(u + v)^n,$ in each term, the sum of the exponents of $u$ and $v$ is $n$ and there are $n+1$ terms.
With that in mind, the sum of the particular term $(u^6)\left(\frac{v^6}{64} \right)$ is $n = 12$ and the number of terms in that particular expansion is $12+1 = 13.$ Since the problem asks for the coefficient of the middle term $C x^{18} y^{12},$ we need to find its middle term. Turns out, in the binomial expansion containing $13$ terms, the middle term would be the $7$th term.
Now looking for for the expression of the $7$th term:
$$nth \space term = C(n, r-1) u^{n-r+1} v^{r-1}$$ $$expression \space of \space 7th \space term = C(12, 7-1) (x^3)^{12-7+1} (2y^2)^{7-1}$$ $$ = (924) (x^3)^{6} (2y^2)^{6}$$ $$ = (924) (x^{18}) (2)^{6}(y^2)^{6}$$ $$ = (924) (x^{18}) (64) (y^2)^{6}$$ $$ = (924) (x^{18}) (64) (y^{12})$$ $$ = 59136 x^{18} y^{12}$$
Therefore, we conclude that $C = 59136.$
Lastly, the equivalent term of $(u^6)\left(\frac{v^6}{64} \right)$ from $(u + v)^n$, when we go back to dealing with $(x^3 + 2y^2)^n$, is $59136x^{18}y^{12}$
Hope it helps.....