# Algebra: Number of layers in the pile of posts

Submitted by Celine_101 on December 15, 2015 - 10:58pm

A pile of creosoted poles contains 1275 poles in layers so that the top layer contains one pole and each lower layer contains one more pole than the layer above. How many layers are in the pile? ( SHOW YOUR SOLUTION PLEASE)

## New forum topics

- Please help me solve this problem: Moment capacity of a rectangular timber beam
- Solid Mensuration: Prismatoid
- Differential Equation: (1-xy)^-2 dx + [y^2 + x^2 (1-xy)^-2] dy = 0
- Differential Equation: y' = x^3 - 2xy, where y(1)=1 and y' = 2(2x-y) that passes through (0,1)
- Tapered Beam
- Vickers hardness: Distance between indentations
- Time rates: Question for Problem #12
- Make the curve y=ax³+bx²+cx+d have a critical point at (0,-2) and also be a tangent to the line 3x+y+3=0 at (-1,0).
- Minima maxima: Arbitrary constants for a cubic
- Minima Maxima: y=ax³+bx²+cx+d

## Re: Algebra

The topmost layer in the pile contains 1 pole, the 2nd layer 2 poles, the third layers 3 poles, and so on. The bottom-most layer, say n

^{th}layer, contains n posts.$1 + 2 + 3 ~ + ... + ~ 5 ~ + ... + ~ n$

The number of poles in these layers of piles is in the form of arithmetic progression (AP) with a common difference d of 1. The first term a

_{1}in AP is 1 (for topmost layer) and the number of terms in AP is the number of layers in the pile. The formula is given by$S = \frac{1}{2}n[ \, 2a_1 + (n - 1)d \, ]$

$1275 = \frac{1}{2}n[ \, 2(1) + (n - 1)(1) \, ]$

$2550 = 2n + n(n - 1)$

$2550 = 2n + n^2 - n$

$n^2 - n - 2550 = 0$

$(n - 51)(n + 50) = 0$

$n = 51 ~ \text{and} ~ -50$

There are 51 layers in the pile.