midspan deflection

Solution to Problem 679 | Midspan Deflection

Problem 679
Determine the midspan value of EIδ for the beam shown in Fig. P-679 that carries a uniformly varying load over part of the span.
 

Solution to Problem 678 | Midspan Deflection

Problem 678
Determine the midspan value of EIδ for the beam shown in Fig. P-678.
 

Solution to Problem 677 | Midspan Deflection

Problem 677
Determine the midspan deflection of the beam loaded as shown in Fig. P-677.
 

Solution to Problem 676 | Midspan Deflection

Problem 676
Determine the midspan deflection of the simply supported beam loaded by the couple shown in Fig. P-676.
 

Solution to Problem 674 | Midspan Deflection

Problem 674
Find the deflection midway between the supports for the overhanging beam shown in Fig. P-674.
 

Overhang beam with point load at the free end

 

Solution to Problem 673 | Midspan Deflection

Problem 673
For the beam shown in Fig. P-673, show that the midspan deflection is δ = (Pb/48EI) (3L2 - 4b2).
 

Simple beam with concentrated load

 

Midspan Deflection | Deflections in Simply Supported Beams

In simply supported beams, the tangent drawn to the elastic curve at the point of maximum deflection is horizontal and parallel to the unloaded beam. It simply means that the deviation from unsettling supports to the horizontal tangent is equal to the maximum deflection. If the simple beam is symmetrically loaded, the maximum deflection will occur at the midspan.
 

Solution to Problem 665 | Deflections in Simply Supported Beams

Problem 665
Replace the concentrated load in Prob. 664 by a uniformly distributed load of intensity wo acting over the middle half of the beam. Find the maximum deflection.
 

Solution to Problem 664 | Deflections in Simply Supported Beams

Problem 664
The middle half of the beam shown in Fig. P-664 has a moment of inertia 1.5 times that of the rest of the beam. Find the midspan deflection. (Hint: Convert the M diagram into an M/EI diagram.)
 

Simple beam with different moment of inertia over the span

 

Pages

Subscribe to RSS - midspan deflection