Skip to main content
HomeMATHalinoEngineering Math Review

Search form

Login • Register

  • Home
    • Recent
    • Glossary
    • About
  • Algebra
    • Derivation of Formulas
    • Engineering Economy
    • General Engineering
  • Trigo
    • Spherical Trigonometry
  • Geometry
    • Solid Geometry
    • Analytic Geometry
  • Calculus
    • Integral Calculus
    • Differential Equations
    • Advance Engineering Mathematics
  • Mechanics
    • Strength of Materials
    • Structural Analysis
  • CE
    • CE Board: Math
    • CE Board: Hydro Geo
    • CE Board: Design
    • Surveying
    • Hydraulics
    • Timber Design
    • Reinforced Concrete
    • Geotechnical Engineering
  • Courses
    • Exams
    • Old MCQ
  • Forums
    • Basic Engineering Math
    • Calculus
    • Mechanics
    • General Discussions
  • Blogs

Breadcrumbs

You are here:

  1. Home
  2. dry friction

dry friction

Problem 521 | Friction

Problem 521
In Fig. P-519, if μ = 0.30 under both blocks and A weighs 400 lb, find the maximum weight of B that can be started up the incline by applying to A a rightward force P of 500 lb.
 

Blocks connected by strut

 

  • Read more about Problem 521 | Friction
  • Log in or register to post comments

Problem 520 | Friction

Problem 520
Referring to Fig. P-519, block A weighs 4 kN and B weighs 3 kN. If μ = 0.20 under B, compute the minimum coefficient of friction under A to prevent motion.
 

Blocks connected by strut

 

  • Read more about Problem 520 | Friction
  • 1 comment
  • Log in or register to post comments

Problem 519 | Friction

Problem 519
In Fig. P-519, two blocks are connected by a solid strut attached to each block with frictionless pins. If the coefficient of friction under each block is 0.25 and B weighs 2700 N, find the minimum weight of A to prevent motion.
 

Blocks connected by strut

 

  • Read more about Problem 519 | Friction
  • Log in or register to post comments

Problem 516 | Friction

Problem 516
Referring to Fig. P-515 if the coefficient of friction is 0.60 and θ = 30°, what force P applied to B acting down and parallel to the incline will start motion? What is the tension in the cord attached to A?
 

Two blocks with one on top of the other

 

  • Read more about Problem 516 | Friction
  • Log in or register to post comments

Problem 515 | Friction

Problem 515
Block A in Fig. P-515 weighs 120 lb, block B weighs 200 lb, and the cord is parallel to the incline. If the coefficient of friction for all surfaces in contact is 0.25, determine the angle θ of the incline of which motion of B impends.
 

Two blocks with one on top of the other

 

  • Read more about Problem 515 | Friction
  • Log in or register to post comments

Problem 514 | Friction

Problem 514
The 10-kN cylinder shown in Fig. P-514 is held at rest on the 30° incline by a weight P suspended from a cord wrapped around the cylinder. If slipping impends, determine P and the coefficient of friction.
 

Cylinder sliding down the plane

 

  • Read more about Problem 514 | Friction
  • Log in or register to post comments

Problem 513 | Friction

Problem 513
In Fig. P-512, the homogeneous block weighs 300 kg and the coefficient of friction is 0.45. If h = 50 cm, determine the force P to cause motion to impend.
 

Tall block on an inclined plane

 

  • Read more about Problem 513 | Friction
  • 1 comment
  • Log in or register to post comments

Problem 512 | Friction

Problem 512
A homogeneous block of weight W rests upon the incline shown in Fig. P-512. If the coefficient of friction is 0.30, determine the greatest height h at which a force P parallel to the incline may be applied so that the block will slide up the incline without tipping over.
 

Tall block on an inclined plane

 

  • Read more about Problem 512 | Friction
  • 2 comments
  • Log in or register to post comments

Problem 511 | Friction

Problem 511
Find the least value of P required to cause the system of blocks shown in Fig. P-511 to have impending motion to the left. The coefficient of friction under each block is 0.20.
 

Two blocks connected by a cord

 

  • Read more about Problem 511 | Friction
  • Log in or register to post comments

Problem 510 | Friction

Problem 510
What weight W is necessary to start the system of blocks shown in Fig. P-510 moving to the right? The coefficient of friction is 0.10 and the pulleys are assumed to be frictionless.
 

Weight of a hanging block

 

  • Read more about Problem 510 | Friction
  • Log in or register to post comments

Pagination

  • Previous page ‹‹
  • (Page 3)
  • Next page ››
Home • Forums • Blogs • Glossary • Recent
About • Contact us • Terms of Use • Privacy Policy • Hosted by Linode • Powered by Drupal
MATHalino - Engineering Mathematics • Copyright 2025 Jhun Vert • All rights reserved