patulong po Hyperbolic and Inverse Hyperbolic functions problems (Integral Calculus) Submitted by john.e on Wed, 12/09/2015 - 19:53 Tags Integration Hyperbolic Function Inverse Hyperbolic Function Log in to post comments Re: patulong po Hyperbolic and Inverse Hyperbolic functions... Jhun Vert Thu, 12/10/2015 - 06:17 Number 1 $\displaystyle \int y^2 \, {\rm csch} \, y^3 \, dy$ $\displaystyle = \frac{1}{3} \int {\rm csch} \, y^3 (3y^2\, dy)$ $\displaystyle = -\frac{1}{3} {\rm coth} \, y^3 + C$ Log in to post comments
Re: patulong po Hyperbolic and Inverse Hyperbolic functions... Jhun Vert Thu, 12/10/2015 - 06:17 Number 1 $\displaystyle \int y^2 \, {\rm csch} \, y^3 \, dy$ $\displaystyle = \frac{1}{3} \int {\rm csch} \, y^3 (3y^2\, dy)$ $\displaystyle = -\frac{1}{3} {\rm coth} \, y^3 + C$ Log in to post comments
Re: patulong po Hyperbolic and Inverse Hyperbolic functions...
Number 1
$\displaystyle \int y^2 \, {\rm csch} \, y^3 \, dy$
$\displaystyle = \frac{1}{3} \int {\rm csch} \, y^3 (3y^2\, dy)$
$\displaystyle = -\frac{1}{3} {\rm coth} \, y^3 + C$