Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…1 week 2 days ago
- Determine the least depth…10 months 1 week ago
- Solve mo ang h manually…1 week 2 days ago
- Paano kinuha yung height na…10 months 2 weeks ago
- It's the unit conversion…10 months 4 weeks ago
- Refer to the figure below…10 months 3 weeks ago
- where do you get the sqrt411 week 2 days ago
- Thank you so much1 week 2 days ago
- How did you get the 2.8 mins…1 week 2 days ago
- How did you get the distance…1 week 2 days ago


$\displaystyle A = \int_{x_1}
$dA = y \, dx$
$\displaystyle A = \int_{x_1}^{x_2} y \, dx$
$\displaystyle A = 2 \int_{-1}^0 (1 + x^3) \, dx$
$A = 1.5 ~ \text{unit}^2$
$\displaystyle A\,Xg = \int x_c \, dA$
$\displaystyle 1.5Xg = \int_{x_1}^{x_2} (-x) \, (y \, dx)$
$\displaystyle 1.5Xg = -2\int_{-1}^{0} x(1 + x^3) \, dx$
$1.5Xg = 3/5$
$Xg = 2/5 ~ \text{unit}$
$\displaystyle A\,Yg = \int y_c \, dA$
$\displaystyle 1.5Yg = \int_{x_1}^{x_2} (y / 2) \, (y \, dx)$
$\displaystyle 1.5Yg = \frac{1}{2}\int_{x_1}^{x_2} y^2 \, dx$
$\displaystyle 1.5Yg = 2\int_{-1}^{0} (1 + x^3)^2 \, dx$
$1.5Yg = 9/7$
$Yg = 6/7 ~ \text{unit}$