An automobile tire is 30 inches in diameter. How fast in rpm does the wheel turn on the axle when the automobile maintains a speed of 50 mph? An automobile tire is 30 inches in diameter. How fast in rpm does the wheel turn on the axle when the automobile maintains a speed of 50 mph? A. 504 C. 551 B. 560 D. 450 Log in or register to post comments Solution Click here to… Jhun Vert Fri, 07/05/2024 - 05:52 Solution Click here to expand or collapse this section $v = \dfrac{50 ~ \text{mi}}{\text{hr}} \times \dfrac{5280 ~ \text{ft}}{\text{mi}} \times \dfrac{12 ~ \text{in}}{\text{ft}} \times \dfrac{1 ~ \text{hr}}{60 ~ \text{min}}$ $v = 52,800 ~ \text{in/min}$ $v = r\omega$ $52,800 = 15\omega$ $\omega = 3520 ~ \text{rad/min}$ $\omega = 3520 ~ \dfrac{\text{rad}}{\text{min}} \times \dfrac{1 ~ \text{rev}}{2\pi ~ \text{rad}}$ $\omega = 560.225 ~ \text{rpm}$ Log in or register to post comments
Solution Click here to… Jhun Vert Fri, 07/05/2024 - 05:52 Solution Click here to expand or collapse this section $v = \dfrac{50 ~ \text{mi}}{\text{hr}} \times \dfrac{5280 ~ \text{ft}}{\text{mi}} \times \dfrac{12 ~ \text{in}}{\text{ft}} \times \dfrac{1 ~ \text{hr}}{60 ~ \text{min}}$ $v = 52,800 ~ \text{in/min}$ $v = r\omega$ $52,800 = 15\omega$ $\omega = 3520 ~ \text{rad/min}$ $\omega = 3520 ~ \dfrac{\text{rad}}{\text{min}} \times \dfrac{1 ~ \text{rev}}{2\pi ~ \text{rad}}$ $\omega = 560.225 ~ \text{rpm}$ Log in or register to post comments
Solution Click here to…