$\dfrac{dT}{dt} = -k(T - T_s)$
$\dfrac{dT}{dt} = -k(T - 20)$
$\dfrac{dT}{T - 20} = -k\,dt$
$\ln (T - 20) = -kt + \ln C$
$\ln (T - 20) = \ln e^{-kt} + \ln C$
$\ln (T - 20) = \ln Ce^{-kt}$
$T - 20 = Ce^{-kt}$
$T = 20 + Ce^{-kt}$
When t = 0, T = 75°
$75 = 20 + Ce^{0}$
$C = 55$
Hence,
$T = 20 + 55e^{-kt}$
When t = 4, T = 30°
$30 = 20 + 55e^{-4k}$
$\frac{10}{55} = e^{-4k}$
$e^{-k} = \left( \frac{2}{11} \right)^{1/4}$
Thus,
$T = 20 + 55\left( \frac{2}{11} \right)^{t/4}$
When T = 20.5°F
$20.5 = 20 + 55\left( \frac{2}{11} \right)^{t/4}$
$\dfrac{0.5}{55} = \left( \frac{2}{11} \right)^{t/4}$
$\ln \dfrac{0.5}{55} = \ln \left( \frac{2}{11} \right)^{t/4}$
$\ln (\frac{1}{110}) = \frac{1}{4}t \, \ln (\frac{2}{11})$
$t = \dfrac{4\ln (\frac{1}{110})}{\ln (\frac{2}{11})}$
$t = 11.029 ~ \text{minutes}$ answer
Paano po nakuha yung 20.5 na
Paano po nakuha yung 20.5 na value ng T?
... the temperature is 20
In reply to Paano po nakuha yung 20.5 na by Drimii (not verified)
... the temperature is 20 degree... within half degree of the air temperature