The coefficients of $x^2$ and $y^2$ are equal, therefore, the curve $x^2 + y^2 - 10x + 4y - 196 = 0$ is a circle.
$x^2 + y^2 - 10x + 4y - 196 = 0$
$(x^2 - 10x) + (y^2 + 4y) = 196$
$(x^2 - 10x + \color{#FC6255}{25}) + (y^2 + 4y + \color{#FC6255}{4}) = 196 + \color{#FC6255}{25} + \color{#FC6255}{4}$
$(x - 5)^2 + (y + 2)^2 = 225$
$(x - 5)^2 + (y + 2)^2 = 15^2$
The standard equation of circle with center at (h, k) and radius r is...
$(x - h)^2 + (y - k)^2 = r^2$
Thus, for the given circle, r2 = 225
$A = \pi r^2 = 225 \pi ~ \text{unit}^2$ ← answer