Find the length of the latus rectum of the following ellipse: 25x^2 + 9y^2 - 300x - 144y + 1251 = 0. Find the length of the latus rectum of the following ellipse: 25x2 + 9y2 - 300x - 144y + 1251 = 0. A. 3.4 C. 3.6 B. 3.2 D. 3.0 Log in or register to post comments Solution Click here to… Jhun Vert Sat, 06/29/2024 - 22:19 Solution Click here to expand or collapse this section $25x^2 + 9y^2 - 300x - 144y + 1251 = 0$ ← ellipse $25(x^2 - 12x) + 9(y^2 - 16y) = -1251$ $25(x^2 - 12x + 36) + 9(y^2 - 16y + 64) = -1251 + 25(36) + 9(64)$ $25(x - 6)^2 + 9(y - 8)^2 = 225$ $\dfrac{(x - 6)^2}{9} + \dfrac{(y - 8)^2}{25} = 1$ $a^2 = 25$ → $a = 5$ $b^2 = 9$ → $b = 3$ $LR = \dfrac{2b^2}{a} = \dfrac{2(9)}{5} = 3.6$ Log in or register to post comments
Solution Click here to… Jhun Vert Sat, 06/29/2024 - 22:19 Solution Click here to expand or collapse this section $25x^2 + 9y^2 - 300x - 144y + 1251 = 0$ ← ellipse $25(x^2 - 12x) + 9(y^2 - 16y) = -1251$ $25(x^2 - 12x + 36) + 9(y^2 - 16y + 64) = -1251 + 25(36) + 9(64)$ $25(x - 6)^2 + 9(y - 8)^2 = 225$ $\dfrac{(x - 6)^2}{9} + \dfrac{(y - 8)^2}{25} = 1$ $a^2 = 25$ → $a = 5$ $b^2 = 9$ → $b = 3$ $LR = \dfrac{2b^2}{a} = \dfrac{2(9)}{5} = 3.6$ Log in or register to post comments
Solution Click here to…