Active forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Application of Differential Equation: Newton's Law of Cooling
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Eliminate the Arbitrary Constants
- Law of cosines
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
New forum topics
- Hydraulics: Rotating Vessel
- Inverse Trigo
- Problems in progression
- General Solution of $y' = x \, \ln x$
- engineering economics: construct the cash flow diagram
- Integration of 4x^2/csc^3x√sinxcosx dx
- Maxima and minima (trapezoidal gutter)
- Special products and factoring
- Newton's Law of Cooling
- Find the roots of the quadratic equation by differentiation method
Recent comments
- Bakit po nagmultiply ng 3/4…2 weeks 4 days ago
- Determine the least depth…10 months 2 weeks ago
- Solve mo ang h manually…2 weeks 4 days ago
- Paano kinuha yung height na…10 months 4 weeks ago
- It's the unit conversion…11 months 1 week ago
- Refer to the figure below…11 months ago
- where do you get the sqrt412 weeks 4 days ago
- Thank you so much2 weeks 4 days ago
- How did you get the 2.8 mins…2 weeks 4 days ago
- How did you get the distance…2 weeks 4 days ago


Re: Differential Equation
Thermometer was taken outside
$T = -10 + (70 + 10)e^{-kt}$
$T = -10 + 80e^{-kt}$
At 1:02 pm, t = 2 and T = 26°F
$26 = -10 + 80e^{-2k}$
$26 = -10 + 80e^{-2k}$
$\frac{36}{80} = e^{-2k}$
$e^{-k} = \left( \frac{9}{20} \right)^{1/2}$
Hence,
$T = -10 + 80\left( \frac{9}{20} \right)^{t/2}$
At 1:05pm, t = 5
$T = -10 + 80\left( \frac{9}{20} \right)^{5/2}$
$T = 0.8673^\circ F$ ← thermometer reading at 1:05 pm
Thermometer was brought back to the room
$T = 70 + (0.8673 - 70)\left( \frac{9}{20} \right)^{t/2}$
$T = 70 + (0.8673 - 70)\left( \frac{9}{20} \right)^{t/2}$
$T = 70 - 69.1327\left( \frac{9}{20} \right)^{t/2}$
At 1:09 pm, t = 4
$T = 70 - 69.1327\left( \frac{9}{20} \right)^{4/2}$
$T = 56^\circ F$ answer