Binomial Theorem

The Expansion of (a + b)n
If   $n$   is any positive integer, then

$(a + b)^n = a^n + {_nC_1}a^{n - 1}b + {_nC_2}a^{n - 2}b^2 + \, \cdots \, + {_nC_m}a^{n - m}b^m + \, \cdots \, + b^n$
 

Where
${_nC_m}$ = combination of n objects taken m at a time.
 

Logarithm and Other Important Properties in Algebra

Properties of Logarithm

  1. If   $y = a^x$,   then   $\log_a y = x$.   ← Definition of logarithm
  2. $\log_a xy = \log_a x + \log_a y$
  3. $\log_a \dfrac{x}{y} = \log_a x - \log_a y$
  4. $\log_a x^n = n \log_a x$
  5. $\log_a a = 1$
  6. $\log_a 1 = 0$
  7. $\log_{10} x = \log x$   ←   Common logarithm
  8. $\log_e x = \ln x$   ←   Naperian or natural logarithm
  9. $\log_y x = \dfrac{\log x}{\log y} = \dfrac{\ln x}{\ln y}$   ←   Change base rule
  10. If   $\log_a x = \log_a y$,   then   $x = y$.
  11. If   $\log_a x = y$,   then   $x = {\rm antilog}_a \, y$.

 

Laws of Exponents and Radicals

Laws of Exponents (Index Law)
1. $x^n = x \cdot x \cdot x ... \, (n \text{ factors})$

2. $x^m \cdot x^n = x^{m + n}$

3. $(x^m)^n = x^{mn}$

4. $(xyz)^n = x^n \, y^n \, z^n$

5. $\dfrac{x^m}{x^n} = x^{m - n}$

6. $\left( \dfrac{x}{y} \right)^n = \dfrac{x^n}{y^n}$

7. $x^{-n} = \dfrac{1}{x^n}$   and   $\dfrac{1}{x^{-n}} = x^n$

8. $x^0 = 1$,   provided   $x \ne 0$.

9. $(x^m)^{1/n} = (x^{1/n})^m = x^{m/n}$

10. $x^{m/n} = \sqrt[n]{x^m}$

11. If   $x^m = x^n$,   then   $m = n$   provided   $x \ne 0$.